Skip to main content

Part I

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 308))

Abstract

Part one consists of seven chapters corresponding to seven lectures delivered. The first chapter gives general introduction to structural optimization, discusses typical objectives, design variables, constraints and equations of state. Chapter 2 applies the concept of local shell buckling to optimization of elastic shells under stability constraints. The remaining chapters are devoted to optimization with respect to plastic or creep buckling: trusses, columns, arches, plates and shells are optimized, in most cases with rheological properties of the material allowed for. The last chapter gives a short survey of recent results, obtained within the years 1984 – 1988.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prager, W.: Optimality criteria in structural design, Proc. Nat- Acad. Sci. USA 61 (1968), 3, 794 – 796.

    MathSciNet  Google Scholar 

  2. Prager, W.: Conditions for structural optimality, Computers and Structures 2 (1972), 5, 833 – 840.

    Google Scholar 

  3. Prager, W. and J-E- Taylor: Problems of optimal structural design, Trans. ASME, J. Appl. Mech. 35 (1968), 1, 102 – 106.

    MATH  Google Scholar 

  4. Berke, L. and V.B. Venkayyas Reviev of optimality criteria approaches in structural optimization, Proc. Struct. Optimiz. Symp, ASME, AMD 7 (1974), 23 – 34.

    Google Scholar 

  5. Save, H.A.: A general criterion for optimal structural design, J. Optimiz. Theory and Appl. 15 (1975), 1, 119 – 129.

    MATH  MathSciNet  Google Scholar 

  6. Fleury, C. and M. Geradin: Optimality criteria and mathematical programming in structural weight optimization, Comput. and Struct. 8 (1978), 7 – 17.

    MATH  Google Scholar 

  7. Mróz, Z. and A. Mironov: Optimal design for global mechanical constraints, Arch. Mech. Stos. 32 (1980), 4, 505 – 516.

    MATH  MathSciNet  Google Scholar 

  8. Galileo Galilei Linceo: Discorsi e dimostrazioni maternatiche, Leiden 1638.

    Google Scholar 

  9. Gajewski, A. and M. Życzkowski: Optimal structural design under stability constraints, Kluwer — Nijhoff, Dordrecht 1988.

    MATH  Google Scholar 

  10. Krzyś, W. and M. Życzkowski: Klasyfikaeja problemów kształtowania wytrzymałościowego, Czasopismo Techniczne 68 (1963), 2, 1 – 4.

    Google Scholar 

  11. Życzkowski, M.: Optimal structural design in rheology, J. Appl. Mech. 38 (1971), 1, 39 – 46.

    Google Scholar 

  12. Życzkowski, M. and A. Gajewski: Optimal structural design under stability constraints, Proc. IUTAM Symp. Collapse — the Buckling of Structures, London 1982, Cambridge Univ. Press 1983, 299 – 332.

    Google Scholar 

  13. Razani, R.: The behavior of the fully stressed design of structures and its relationship to minimum weight design, AIAA Journal 3 (1965), 12, 2262 – 2268.

    Google Scholar 

  14. Kicher, T.P.: Optimum design — minimum weight versus fully stressed, Proc. ASCE, J. Struct. Div. 92 (1966), 6, 265 – 279.

    Google Scholar 

  15. Reinschmidt, K., C.A. Cornell and J.F. Brotchie: Iterative design and structural optimization, Proc. ASCE, J. Struct. Div. 92 (1966), ST6, 281 – 318.

    Google Scholar 

  16. Malkov, V.P. and R.G. Strongin: Minimum weight design based on strength constraints (in Russian), Mietody Reshenya Zadach Uprugosti i Plastichnosti 4, Gorky 1971, 138 – 149.

    Google Scholar 

  17. Gallagher, R.H.: Fully stressed design, Optimum structural design: theory and applications, Wiley, New York 1973, 19 – 32.

    Google Scholar 

  18. Nemirovsky, Yu.V. and B.S. Reznikov: Beams and plates of uniform strength in creep conditions (in Russian), Mashinovedenye (1969), 2, 58 – 64.

    Google Scholar 

  19. Życzkowski, M. and W. Swisterski: Optimal structural design of flexible beams with respect to creep rupture time, Proc. IUTAM Symp. Structural Control, Waterloo 1979, North — Holland 1980, 795 – 810.

    Google Scholar 

  20. Drucker, D.C. and R.T. Shields Design for minimum weight, Proc. 9th Int. Congr. Appl. Mech., Brussels 1956, vol. 5 (1957), 212 – 222.

    Google Scholar 

  21. Drucker, D.C. and R.T. Shield: Bounds on minimum weight design, Quart. Appl. Math. 15 (1957), 269 – 281.

    MATH  MathSciNet  Google Scholar 

  22. Zavelani-Rossi, A.: Minimum — weight design for two -dimensional bodies, Meccanica 4 (1969), 4, 445 – 452.

    Google Scholar 

  23. Kordas, Z. and M. Życzkowski: Investigations of the shape of thick-walled non-circular cylinders showing full plasticization at the collapse, Bull. Acad. Pol., Ser. Sci. Techn. 18 (1970), 10, 839 – 847 (English extensive summary);

    Google Scholar 

  24. Kordas, Z. and M. Życzkowski: Investigations of the shape of thick-walled non-circular cylinders showing full plasticization at the collapse, Rozpr. Inż. 18 (1970), 3, 371 – 390 (Polish full text).

    Google Scholar 

  25. Kordas, Z.: Problematyka określania ksztaltów ciał wykazujacych całkowite uplastycznienie w stadium zniszczenia, Zeszyty Naukowe Politechniki Krakowskiej, Podstawowe Nauki Techniczne 15 (1977).

    Google Scholar 

  26. Bochenek, B., Z. Kordas and M. Życzkowski: Optimal plastic design of a cross section under torsion with small bending, J. Struct. Mech. 11 (1983), 3, 383 – 400.

    Google Scholar 

  27. Skrzypek, J. and M. Życzkowski: Termination of processes of finite plastic deformations of incomplete toroidal shells, Solid Mech. Arch. 8 (1983), 1, 39 – 98.

    MATH  Google Scholar 

  28. Szuwalski, K. and M. Życzkowski: On the phenomenon of decohesion in perfect plasticity, Int. J. Solid Struct. 9 (1973), 1, 85 – 98.

    Google Scholar 

  29. Wasiutyński, Z.: O kształtowaniu wytrzymałościowym, Akademia Nauk Technicznych, Warszawa 1939.

    Google Scholar 

  30. Prager, W.: Optimal structural design for given stiffness in stationary creep, Z. angew Math. Physik 19 (1968), 252 – 256.

    MATH  Google Scholar 

  31. Niordson, F.: On the optimal design of a vibrating beam, Quart. Appl. Math. 23 (1965), 1, 47 – 53.

    MathSciNet  Google Scholar 

  32. Olhoff, N.: A survey of the optimal design of vibrating structural elements. Shock and Vibration Digest 8 (1976), 8, 3 – 10; 9, 3 – 10.

    Google Scholar 

  33. Troitsky, V.A.: Optimization of elastic bars in the presence of free vibrations (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela (1976), 3, 145 – 152.

    Google Scholar 

  34. Shanley, F.R.: Principles of structural design for minimum weight, J. Aero. Sci. 16 (1949), 3.

    Google Scholar 

  35. Shanley, F.R.: Weight — strength analysis of aircraft structures, McGraw-Hill, New York — Toronto — London 1952.

    Google Scholar 

  36. Spunt, L.: Optimum structural design, Prentice — Hall, Englewood Cliffs, N.J., 1971.

    Google Scholar 

  37. Neut, A., van der: The interaction of local buckling and column failure of thin-walled compression members, Proc. 12th Int. Congr. Appl. Mech. Stanford 1968, Springer 1969, 389 – 399.

    Google Scholar 

  38. Thompson, J.M.T.: Optimization as a generator of structural instability, Int. J. Mech. Sci. 14 (1972), 9, 627 – 629.

    Google Scholar 

  39. Thompson, J.M.T. and W.J. Supple: Erosion of optimum designs by compound branching phenomena, J. Mech. Phys. Solids 21 (1973), 3, 135 – 144.

    Google Scholar 

  40. Volmir, A.S.: Stability of elastic systems (in Russian), Fizmatgiz, Moskva 1963; Stability of deformable systems (in Russian), Nauka, Moskva 1967.

    Google Scholar 

  41. Życzkowski, M. and J. Kruzelecki: Optimal design of shells with respect to their stability, Proc. IUTAM Symp. Optimization in Structural Design, Warsaw 1973, Springer 1975, 229 – 247.

    Google Scholar 

  42. Prager, W.: Introduction to structural optimization, CISM Courses 212, Springer, Wien — New York 1974.

    MATH  Google Scholar 

  43. Markiewicz, M.: Kształtowanie prostych ustrojów kratowych przy warunkach stateczności sprężysto — -plastycznej metodą wyznaczania konturu całkowitej niejednoznaczności, Rozpr. Inż. 28 (1980), 4, 569 – 584.

    MATH  MathSciNet  Google Scholar 

  44. Markiewicz, M. and M. Życzkowski: Contour of complete non-uniqueness as a method of structural optimization with stability constraints, J. Optimiz. Theory Appl. 35 (1981), 1, 23 – 30.

    MATH  Google Scholar 

  45. Bürgermeister, G. and H. Steup: Stabilitätstheorie, Teil 1, Akademie — Verlag, Berlin 1957; Teil 2 (with H. Kretzschmar), Berlin 1963.

    Google Scholar 

  46. Wojdanowska, R. and M. Życzkowski: Optimal trusses transmitting a force to a given contour in creep conditions, Int. J. Mech. Sci. 26 (1984), 1, 21 – 28.

    MATH  Google Scholar 

  47. Shtaerman, I.Ya.: Stability of shells (in Russian), Trudy Kievsk. Aviats. Instituta 1 (1936).

    Google Scholar 

  48. Rabotnov, Yu.N.: Local stability of shells (in Russian), Dokl. AN SSSR, Novaya Seria 52 (1946), 2, 111 – 112.

    MathSciNet  Google Scholar 

  49. Shirshov, V.P.: Local stability of shells (in Russian), Trudy II Vsesoy. Konf. po Teorii Plastin i Obolochek, Lvov 1961, Kiev 1962, 314 – 317.

    Google Scholar 

  50. Axelrad, E.L: On local buckling of thin shells, Int. J. Non-Linear Mech. 20 (1985), 4, 249 – 259.

    MATH  Google Scholar 

  51. Krużelecki, J.: Optimal design of a cylindrical shell under overall bending with axial force, Bull. Acad. Pol., Ser- Sci. Techn- 35 (1987) (English extensive summary); Rozpr. Inż. 33 (1985), 1/2, 135 – 149, (Polish full text).

    Google Scholar 

  52. Krużelecki, J.: Optimization of shells under combined loadings via the concept of uniform stability, Optimization of distributed parameter structures, Ed. by E.J. Haug and J. Cea, Nijhoff, Vol. II, 929 – 950 (1981).

    Google Scholar 

  53. Krużelecki, J. and M. Życzkowski: Optimal design of an elastic cylindrical shell under overal bending with torsion, Solid Mechanics Archives 9 (1984), 3, 269 – 306.

    Google Scholar 

  54. Krużelecki, J. and M. Życzkowski: Optimal structural design of shells — a survey, Solid Mechanics Archives 10 (1985), 2, 101 – 170.

    MATH  Google Scholar 

  55. Pflüger, A.: Stabilitätsprobleme der Elastostatik, Springer, Berlin — Göttingen — Heidelberg 1950 (1964, 1975).

    MATH  Google Scholar 

  56. Laasonen, P.: Nurjahdustuen edul1isimmasta poikipin-nanvalinnasta, Tekn- Aikakauslehti 38 (1948), 2, 49.

    Google Scholar 

  57. Krzyś, W.: Optimale Formen Bedrückter dünnwandiger Stützen im elastisch-plastischen Bereich, Wiss. Z. TU Dresden 17 (1968), 2, 407 – 410.

    Google Scholar 

  58. Krzyś, W.: Optimum design of thin — walled closed cross — section columns, Bull. Acad. Pol., Ser. Sci. Techn. 21 (1973), 8, 409 – 420.

    Google Scholar 

  59. Bleich, F.: Buckling strength of metal structures, McGraw-Hill, New York 1952.

    Google Scholar 

  60. Siegfried, W.: Failure from creep as influenced by the state of stress, J. Appl. Mech. 10 (1943), 4, 202 – 212.

    Google Scholar 

  61. Freudenthal, A.M.: Some time effects in structural analysis, Rep. 6th Int. Congr. Appl. Mech., Paris 1946.

    Google Scholar 

  62. Rzhanitsyn, A.R.: Deformation processes of structures consisting of viscoelastic elements, (in Russian), Dokl. AN SSSR 52 (1946), 25, 1.

    Google Scholar 

  63. Ross, A.D.: The effect of creep on instability and indeterminacy investigated by plastic models, Struct. Eng. 24 (1946), 413.

    Google Scholar 

  64. Wojdanowska, R.: Optimal design of weakly curved compressed bars with Maxwell type creep effects, Arch. Mech. Stos. 30 (1978), 6, 845 – 851.

    Google Scholar 

  65. Wojdanowska, R. and M. Życzkowski: On optimal imperfect columns subject to linear creep buckling, J. Appl. Mech. 47 (1980), 2, 438 – 439.

    Google Scholar 

  66. Kempner, J.: Creep bending and buckling of non-linearly viscoelastic columns, PIBAL Rep. No. 200, Brooklyn 1952; NACA TN 3137, Jan. 1954.

    Google Scholar 

  67. Hoff, N.J.: Buckling and stability, J. Roy. Aero. Sci. 58 (1954), 3 – 52.

    Google Scholar 

  68. Gerard, G.: A creep buckling hypothesis, J. Aero. Sci. 23 (1956), 9, 879 – 882.

    MATH  MathSciNet  Google Scholar 

  69. Rabotnov, Yu.N. (G.N.) and S.A. Shesterikovs Creep stability of columns and plates, Prikl. Mat. Mekh. 21 (1957), 3, 406 – 412 (Russian version);

    Google Scholar 

  70. Rabotnov, Yu.N. (G.N.) and S.A. Shesterikovs Creep stability of columns and plates, Prikl. Mat. Mekh. J. Mech. Phys. Solids 6 (1957), 1, 27 – 34 (English version).

    MATH  Google Scholar 

  71. Życzkowski, M. and R. Wojdanowska-Zając: Optimal structural design with respect to creep buckling, Proc. IUTAM Symp. Creep in Structures 2, Göteborg 1970, Springer 1972, 371 – 387.

    Google Scholar 

  72. Błachut, J. and M. Życzkowski: Bimodal optimal design of clamped-clamped columns under creep conditions, Int. J. Solids Struct. 20 (1984), 6, 571 – 577.

    MATH  Google Scholar 

  73. Wróblewski, A.: Parametryczna optymalizacja prętów mimośrodowo ściskanych w nawiązaniu do teorii wyboczenia pełzającego Kempnera — Hoffa (in print).

    Google Scholar 

  74. Ṡwisterski, W., A. Wróblewski and M. Życzkowskis Geometrically non-linear eccentrically compressed columns of uniform creep strength vs. optimal columns, Int. J. Non-Linear Mech. 18 (1983), 4, 287 – 296.

    Google Scholar 

  75. Życzkowski, M. Recent results on optimal design in creep conditions, Euromech Coll. 164 on Optimization Methods in Structural Design, Siegen 1982, Bibliograph. Inst. Zürich 1983, 444 – 449.

    Google Scholar 

  76. Wróblewski, A. and M. Życzkowski: On multimodal optimization of circular arches against plane and spatial creep buckling, Structural Optimization 1 (1989), 2.

    Google Scholar 

  77. Kordas, Z.: Stability of the elastically clamped compressed bar in the general case of behaviour of the loading, Bull. Acad. Pol., Ser. Sci. Techn. 11 (1963), 419 – 428 (English extensive summary);

    Google Scholar 

  78. Kordas, Z.: Stability of the elastically clamped compressed bar in the general case of behaviour of the loading, Rozpr. Inż. 11 (1963), 3, 435 – 448 (Polish full text).

    MATH  Google Scholar 

  79. Bochenek, B. and A. Gajewski: Multimodal optimal design of a circular funicular arch with respect to in-plane and out-of-plane buckling, J. Struct. Mech. 14 (1986), 3, 257 – 274.

    Google Scholar 

  80. Wróblewski, A.: Optimal design of a circular plate with respect to creep buckling (in print).

    Google Scholar 

  81. Rysz, M. and M. Życzkowski: Optimal design of a cylindrical shell under overall bending and axial force with respect to creep stability. Structural Optimization 1 (1989), 1.

    Google Scholar 

  82. Haftka, R.T. and R.V. Grandhi: Structural shape optimization — a survey, 26th Struct. Dyn. and Mat. Conf., Part I, New York 1985, 617 – 628.

    Google Scholar 

  83. Levy, R. and O.E. Lev: Recent developments in structural optimization, Proc. ASCE, J. Struct. Engng. 113 (1987), 9, 1939 – 1962.

    Google Scholar 

  84. Życzkowski, M.: Optimal structural design under creep conditions, Mech. Teor. Stos. 24 (1986), 3, 243 – 258 (Polish version), Appl. Mech. Rev., 41 (1988), 12, 453 – 461 (English extended version).

    Google Scholar 

  85. Haftka, R.T. and M.P. Kamat: Elements of structural optimization, Nijhoff, Dordrecht 1985.

    MATH  Google Scholar 

  86. Haug, E.J., K.K. Choi and V. Komkov: Design sensitivity analysis of structural systems, Academic Press, Orlando — San Diego — New York 1986.

    MATH  Google Scholar 

  87. Save, M. and W. Prager: Structural optimization, Vol.1, Optimality criteria, Plenum Press, New York 1985.

    MATH  Google Scholar 

  88. Banichuk, N.V.: Introduction to structural optimization (in Russian), Nauka, Moskva 1986.

    Google Scholar 

  89. Banichuk, N.V. and A.A. Barsuk: Application of spectral decomposition of eigenvalues in structural optimization under stability constraints (in Russian), Problemy Ustoych. i Pred. Nes. Sposobn. Konstruktsiy, Leningrad 1983, 17 – 24.

    Google Scholar 

  90. Bratus, A.S. and A.P. Seyranian: Bimodal solutions in optimization of eigenvalues (in Russian), Prikl. Mat. Mekh. 47 (1983), 4, 546 – 554.

    MathSciNet  Google Scholar 

  91. Shin, Y.S., R.H. Plaut and R.T. Haftka: Simultaneous analysis and design for eigenvalue maximization, AIAA/ASME/ASCE/AHS 28th Struct., Struct. Dyn. and Mat. Conf., Monterey, 1987, New York 1987, 334 – 342.

    Google Scholar 

  92. Antman, S.S. and C.L. Adler: Design of material properties that yield a prescribed global buckling response, Trans. ASME, J. Appl. Mech. 54 (1987), 2, 263 – 266.

    MATH  MathSciNet  Google Scholar 

  93. Bushnell, D.: PANDA 2 — program for minimum weight design of stiffened, composite, locally buckled panels, Comp. and Struct. 25 (1987), 4, 469 – 605.

    MATH  Google Scholar 

  94. Seyranian, A.P.: On a certain problem of Lagrange (in Russian), Izv. AN SSSR, Mekh. Tverd. Tela (1984), 2, 101 – 111.

    Google Scholar 

  95. Madsen, N.: Analytical determination of higher buckling modes for unimodal optimal columns, J. Struct. Mech. 11 (1984), 4, 545 – 560.

    MathSciNet  Google Scholar 

  96. Olhoff, N.: Structural optimization by variational methods, Computer Aided Optimal Design, Proc. NATO Adv. Study Institute, Tróia 1986, Springer 1987, 87 – 164.

    Google Scholar 

  97. Efremov, A.Yu. and K.A. Matveev: Shape optimization of bars in stability problems (in Russian), Dinam. i Prochnost Aviats. Konstr., Novosibirsk 1986, 89 – 92.

    Google Scholar 

  98. Pfefferkorn, W.: Der dünnwandige Knickstab mit minimierter Masse, IfL — Mitteilungen 25 (1986), 3, 65 – 67.

    Google Scholar 

  99. Larichev, A.D.: Optimization of stability of thin-walled bars of open cross-section, (in Russian), Prikl. Probl. Prochn. Plastichn. (Gorky), 1986, No. 34, 97 – 103.

    Google Scholar 

  100. Mikulski, T. and C. Szymczak: Optymalne kształtowanie przekroju poprzecznego ściskanych pretów cienkościennych o przekroju otwartym, Zesz. Nauk. Polit. Gdańskiej 42 (1987), 73 – 92.

    Google Scholar 

  101. Hasegawa, A-, H. Abo, M. Mauroof and F. Nishino: A simplifiield analysis and optimality on the steel column behavior with local buckling, Proc. Jap. Soc. Eng. 1986, No. 374, 195 – 204.

    Google Scholar 

  102. Kartvelishvili, V.M.: On optimal solutions to a Prandtl’s problem (in Russian), Issled. po stroit. mekh. i nadezhn. konstr., Moskva 1986, 81 – 89.

    Google Scholar 

  103. Wang, C.M., V. Thevendran, K.L. Tea and S. Kitipornchai: Optimal design of tapered beams for maximum buckling strength, Eng. Struct. 8 (1986), 4, 276 – 284.

    Google Scholar 

  104. Vison, J.R.: Optimum design of composite honeycomb sandwich panels subjected to uniaxial compression, AIAA Journal 24 (1986), 10, 1690 – 1696.

    Google Scholar 

  105. Vinson, J.R.: Minimum weight web-core sandwich panels subjected to combined uniaxial compression and in-plane shear loads, AIAA/ASME/ASCE/AHS 28th Struct., Struct. Dyn. and Mat. Conf., Monterey 1987, New York 1987, 282 – 288.

    Google Scholar 

  106. Nakagiri, S. and H. Takabatake: Optimum design of FRP laminated plates under axial compression by use of the Hessian matrix, Proc. Int. Conf. Computer Mechanics ’86, Tokyo, Vol. 2, Tokyo 1986, X/71 – X/76.

    Google Scholar 

  107. Mróz, Z.: Sensitivity analysis and optimal design with account for varying shape and support conditions. Computer Aided Optimal Design, Proc. NATO Adv. Study Institute, Tróia 1986, Springer 1987, 407 – 438.

    Google Scholar 

  108. McGrattan, R.J.: Weight optimization of stiffened cylindrical panels, Trans. ASME, J. Pressure Vessel Techn. 109 (1987), 1, 1 – 9.

    Google Scholar 

  109. Błachut, J.: Optimal barrel — shaped shells under buckling constraints, AIAA Journal 25 (1987), 1, 186 – 188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Wien

About this chapter

Cite this chapter

Zyczkowski, M. (1989). Part I. In: Zyczkowski, M. (eds) Structural Optimization under Stability and Vibration Constraints. International Centre for Mechanical Sciences, vol 308. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2969-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2969-2_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82173-2

  • Online ISBN: 978-3-7091-2969-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics