Advertisement

Generalization of Newton-Type Methods of Inelastic Contact Problems

  • D. Bischoff
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 304)

Abstract

Just as for elastic contact problems one can state for the elastoplastic one a minimization problem in terms of stress- and strain-rates. After a discretization in time by finite differences and in space by finite elements one has to solve either a sequence of nonlinear optimization problems with constraints or a sequence of Kuhn-Tucker inequalities. For this, sequential quadratic programming algorithms (as the natural extension of Newton-methods to problems with constraints) have proved best. So far, these methods were restricted to problems with small dimension and thus not suited for problems in the field of structural mechanics.

It is shown how to implement this method in general finite element codes by help of an algorithm given by Bertsekas. In the case that contact appears on the boundary of the body it is demonstrated how to accelerate the convergence substantially by a condensation of the linearized problems to the contact-variables.

Keywords

Contact Problem Sequential Quadratic Programming Contact Node Sequential Quadratic Programming Algorithm Quadratic Programming Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dennis, J., More, J.: “Quasi Newton Methods, Motivation and Theory”, SIAM Review 19, (1977), 46–89.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Strang, G., Matthies, H., Temam, R.: “Mathematical and Computational methods in plasticity”, in: S. Nemat-Nasser (ed.): Variational Methods in the Mechanics of Solids, Pergamon Press, Oxford, (1980), 20–28.CrossRefGoogle Scholar
  3. 3.
    Bathe, K.J., Snyder, M.D., Cimento, A.P., Rolph, W.D.: “On some current procedures and difficulties in finite element analysis of elastic-plastic response”, Computers & Structures, 12 (1980), 607–624CrossRefMATHGoogle Scholar
  4. 4.
    Simo, J.C., Taylor, R.L.: “Consistent tangent operators for rate-independent elastoplasticity”, Comp. Meths. in Appl. Mechs. and Eng., 48 (1985), 101–118.ADSCrossRefMATHGoogle Scholar
  5. 5.
    Martin, J.B.: “On the kinematic minimum principle for the rate problem in classical plasticity”, J. Mech. Phys. Solids, 23, (1975), 123–128.ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Sewell, M.J.: “The governing equations and extremum principles ofGoogle Scholar
  7. 7.
    elasticity and plasticity generated from a single functional”, part I, II; J. Structural Mech., 2, (1972), 1–32, 135–158.Google Scholar
  8. 8.
    Bischoff, D., Plank, L., Stein, E.: “Solution strategies for elastic and inelastic contact problem of solids”, in: E. Hinton,...(eds.): Numerical methods in transient and coupled problems, J. Wiley, L., to appear.Google Scholar
  9. 9.
    Schittkowski, K.: “The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function”, part I, II, Numerische Mathematik, 39, (1981), 83–127.MathSciNetGoogle Scholar
  10. 10.
    Bertsekas, D.P.: “Constrained optimization and Lagrange multiplier methods”, Acad. Pr., N.Y., (1982).MATHGoogle Scholar
  11. 11.
    Stein, E., Lambertz, K.H., Plank, L.: Ultimate load analysis of folded plate structures with large elastoplastic deformations- theoretical and practical comparisons of different FE-algorithms, Numeta 85, Swansea, U.K., (1985).Google Scholar
  12. 12.
    Gruttmann, F.: Konsistente Steifigkeitsmatrizen in der Elasto-Plastizitätstheorie, Workshop: Diskretisierungen in der Kontinuums-mechanik — Finite Elemente und Randelemente, Bad Honnef, Gr 1-Gr 14 (1985)Google Scholar
  13. 13.
    Temam, R., Strang, G.: “Functions of bounded deformation”, Arch. Rat. Mech. Anal., 75 (1980), 7–21.MATHMathSciNetGoogle Scholar
  14. 14.
    Wriggers, P., Nour-Omid, B.: “Solution methods for contact problems”, Rep. UCB/SESM 84/09, Univ. of California, Berkeley, 1984.Google Scholar
  15. 15.
    Schittkowski, K.: “On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function”, Mathematische Operationsforschung und Statistik, Series Optimization, 14, (1983), 197–216.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Gill, P.E., Murray, W., Wright, M.H.: “Practical Optimization”, Acad. Pr., London, (1981).MATHGoogle Scholar
  17. 17.
    Bischoff, D., Mahnken, R.: “Zur Konvergenz von Kontaktalgorithmen, die auf Active Set Strategien beruhen”, GAMM-Seminar: Unilaterale Probleme, Stuttgart, 1984.Google Scholar
  18. 18.
    Powell, J.J.D.: “Introduction to constrained optimization”, in: Gill, P.E., Murray, W. (eds.): Numerical methods for constrained optimization, Acad. Pr., London (1974), 1–28.Google Scholar
  19. 19.
    Bischoff, D., Mahnken, R.: “Projizierte Newton- bzw. Quasi-Newton-Verfahren für Kontaktprobleme”, to appear.Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • D. Bischoff
    • 1
  1. 1.Institute of Structural Mechanics and Numerical MechanicsUniversity of HannoverGermany

Personalised recommendations