Advertisement

A Numerical Algorithm for Signorini’s Problem with Coulomb Friction

  • H. J. C. Barbosa
  • R. A. Feijóo
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 304)

Abstract

The problem of contact between a deformable solid and a rigid surface where friction forces following Coulomb’s law can arise is studied in this work. The problem is approximated by a sequence of two simpler problems: (i) contact without friction and (ii) friction with prescribed normal stress. Within the context of linear elasticity steps (i) and (ii) are formulated as minimization problems. Lagrange multipliers are introduced and the finite element method is used for spatial discretization. Two quadratic programming problems arise and are solved by Gauss-Seidel algorithm with relaxation and projection. A numerical example is presented.

Keywords

Lagrange Multiplier Contact Problem Coulomb Friction Deformable Body Nodal Unknown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FRANCAVILLA, A.; ZIENKIEWICZ, O.C., “A Note on Numerical Computation of Elastic Contact Problems”, Int. J. Num. Meth.Engng.. 9, (1975), p. 913–924.CrossRefGoogle Scholar
  2. 2.
    STÄDTER, J.T.; WEISS, R.D., “Analysis of Contact through Finite Element Gaps”, Computer and Structures 10 (1979), p. 867–873.CrossRefGoogle Scholar
  3. 3.
    DUVAUT, G.; LIONS, J.L., Les Inéquations en Mécanique et en Physique, Dunod, Paris (1972).MATHGoogle Scholar
  4. 4.
    PANAGIOTOPOULOS, P.D., “A Nonlinear Programming Approach to the Unilateral Contact and Friction Boundary Value Problem in the Theory of Elasticity”, Ing. Arch. 44 (1975), p. 421–432.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    FEIJÓO, R.A.; BARBOSA, H.J.C., “Static Analysis of Piping Systems with Unilateral Supports”, Proc. VII Brazilian Congress of Mechanical Engineering, Uberlandia, MG (1983), v. D, p. 269–279.Google Scholar
  6. 6.
    BARBOSA, H.J.C.; FEIJÓO, R.A., “Numerical Algorithms for Contact Problems in Linear Elastostatics”, Proc.Conf.Struct.Anal. and Design of Nuclear Power Plants, Porto Alegre, RS (1984), v.1, p. 231–244.Google Scholar
  7. 7.
    BARBOSA, H.J.C.; FEIJÓO, R.A., “An Algorithm for the Rigid Indentation Problem in Elastostatics”, Research and Development Report n9 025/84, LNCC/CNPq (in Portuguese).Google Scholar
  8. 8.
    CEA, J., Optimization, Théorie et Algorithme, Dunod, Paris (1971).Google Scholar
  9. 9.
    NECAS, J.; JARUSEK, J. and HASLINGER, J., “On the Solution of the Variational Inequality to the Signorini Problem with Small Friction”, Boll. Un. Mat. Ital., 17B, p. 796–811 (1980).MATHMathSciNetGoogle Scholar
  10. 10.
    DUVAUT, G., “Equilibre d’un Solide Elastique avec Contact Unilateral et Frottement de Coulomb”, C.R. Acad.Sc. Paris, t 290, serie A, p. 263–265 (1980).Google Scholar
  11. 11.
    ODEN, J.T.; PIRES, E.B., “Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity”, J.Appl. Mach. 50(1), p. 67–76 (1983).ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    ODEN, J.T.; PIRES, E.B., “Numerical Analysis of Certain Contact Problems with Non-Classical Friction Laws”, Computers and Structures 16, p. 471–478 (1983).CrossRefGoogle Scholar
  13. 13.
    KALKER, J.J., “On the Contact Problem in Elastostatics”, in Unilateral Problems in Structural Analysis, Ed. G. Del Piero, F. Maceri, CISM Courses and Lectures no 288.Google Scholar
  14. 14.
    CAMPOS, L.T.; ODEN, J.T. and KIKUCHI, N., “A Numerical Analysis of a Class of Contact Problems with Friction in Elastostatics”, Comp. Meth. Appl. Mech. Engng. 34 (1982), p. 821–845.ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    RAOUS, M., “Contacts Unilatéraux avec Frottement en Visco-élastici-té”, in Unilateral Problems in Structural Analysis, Ed. G. Del Piero, F. Maceri, CISM Courses and Lectures no 288.Google Scholar
  16. 16.
    HASLINGER, J.; PANAGIOTOPOULOS, P.D., “The Reciprocal Variational Approach to the Signorini Problem with Friction. Approximation Results”, Proc. Royal Soc. of Edinburgh, 98A, p. 365–383 (1984).CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    GLOWINSKI, R.; LIONS, J.L.; TREMOLIERES, R., Analyse Numérique des Inéquations Variationelles, Dunod, Paris (1976).Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • H. J. C. Barbosa
    • 1
  • R. A. Feijóo
    • 1
  1. 1.LNCC/CNPqRio de JaneiroItaly

Personalised recommendations