Advertisement

Convex Problems in Structural Mechanics

  • G. Romano
  • E. Sacco
Part of the International Centre for Mechanical Sciences book series (CISM, volume 304)

Abstract

The object of the paper is a presentation of the basic theory of those problems in structural mechanics in which the relations between the internal (stress-strain) and the external (displacement-reaction) fields are governed by general convex (non differentiable) potentials. The analysis is developed in the formal framework of Convex Analysis and is based on the Fenchel duality theory. Admissibility conditions on the data and their variational formulations are discussed. Necessary and sufficient conditions defining limit loads and distorsions are given.

Existence under admissible (but not limit) data is proved, variational and extremum principles are developed.

Keywords

Variational Inequality Constraint Condition Elastic Strain Energy Limit Load Admissibility Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moreau J.J.: La notion de sur-potential et les liaisons unilatérales en élastostatique. CR. Acad. Sc. Paris, 267 (1968), 954–957.MATHMathSciNetGoogle Scholar
  2. 2.
    Panagiotopoulos P.D.: Inequality Problems in Mechanics and Applications. Birkhauser, Boston-Basel-Stuttgart 1985.CrossRefMATHGoogle Scholar
  3. 3.
    Fenchel W.: On conjugate convex functions. Canad. J. Math., 1 (1949), 73–77.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Moreau J.J.: On unilateral constraints, friction and plasticity, in: New Variational Techniques in Mathematical Physics (Ed. Cremonese Roma 1974), C.I.M.E. Bressanone 17–26 giugno 1973, 171–322.Google Scholar
  5. 5.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton 1970.MATHGoogle Scholar
  6. 6.
    Romano G., Romano M.: Elastostatics of structures with unilateral conditions on stress and displacement fields, in: Unilateral Problems in Structural Analysis, Springer-Verlag Wien-New York (1985), CISM Courses and Lectures n. 288, Ravello September 22–24, 1983, 315–338.Google Scholar
  7. 7.
    Romano G., Sacco E.: Sul calcolo di strutture non resistent! a tra-zione. AIMETA VII Congresso Nazionale, Trieste 2–5 ottobre 1984, Sez. V, 217–226.Google Scholar
  8. 8.
    Romano G., Sacco E.: Materiali non resistenti a trazione: equazioni costitutive e metodi di calcolo. Atti Ist. Scienza delle Costruz., Facoltà di Ingegneria, Université di Napoli (1984).Google Scholar
  9. 9.
    Rockafellar R.T.: Directionally lipshitzian functions and subdiffe-rential calculus. Proc. London Math. Soc. 39 (1979), 331–355.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Salençon J.: Calcul à la rupture et analyse limite. Presse de l’école National de Ponts et Chaussées, Paris (1983).Google Scholar
  11. 11.
    Romano G., Sacco E,: Analisi limite e collasso plastico per materiali non standard ben posti. Riv. Ital. Geotecnica, 1 (1985), 37–41,Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • G. Romano
    • 1
  • E. Sacco
    • 2
  1. 1.Istituto di Scienza delle CostruzioniUniversity of NaplesItaly
  2. 2.Dipartimento di Ingegneria Civile2nd University of RomeItaly

Personalised recommendations