Generalized Variational Principles and Unilateral Constraints in Analytical Mechanics

  • H. O. May
Part of the International Centre for Mechanical Sciences book series (CISM, volume 304)


The aim of this paper is to examine unilateral constraints in analytical mechanics. Examples of mechanical systems subject to unilateral constraints are moving rigid bodies which may enter into contact and detach from each other. But unilateral constraints also occur when two satellites are connected by a rope.


Variational Principle Reaction Force Differential Inclusion Nonholonomic Constraint Virtual Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Appell, P.: Traité de Mécanique Rationelle, Vol. 1,2. Gauthier-Villars, Paris 1904Google Scholar
  2. 2.
    Hamel, G.: Theoretische Mechanik, Springer, Berlin, Heidelberg 1978MATHGoogle Scholar
  3. 3.
    Lanczos, C: The Variational Principles of Mechanics, University of Toronto Press, Toronto 1966Google Scholar
  4. 4.
    Peres, J.: Mécanique générale, Masson, Paris 1953MATHGoogle Scholar
  5. 5.
    Bouligand, G.: Compléments et exercises sur la mécanique des solides, Vuibert, ParisGoogle Scholar
  6. 6.
    Delassus, E.: Théorie des liaisons finies unilatérales. Ann. Sci. Ec. Norm., (3), 34(1917), 95–179MATHMathSciNetGoogle Scholar
  7. 7.
    Stavrakova, N.E.: The Principle of Hamilton-Ostrogradskii for Systems with One-Sided Constraints. PMM 29(1965), 738–741MATHMathSciNetGoogle Scholar
  8. 8.
    Moreau, J.-J.: Les liaisons unilatérales et le principe de Gauss, Comptes rendus 256(1963), 871–874MathSciNetGoogle Scholar
  9. 9.
    Moreau, J.-J.: Liaisons unilatérales sans frottement et chocs inêlastiques, C.R.Acad.Se., Série II, 296(1983), 1473–1476MATHMathSciNetGoogle Scholar
  10. 10.
    Moreau, J.-J.: Standard Inelastic Shocks and the Dynamics of Unilateral Constraints, in: Unilateral Problems in Structural Analysis (Ed. G. Del Piero/F. Maceri), Springer, Wien, New York 1985Google Scholar
  11. 11.
    Lötstedt, P.: Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints, SIAM J. Appl. Math. 42 (1982), 281–296CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Rockafellar, R.T.: The Theory of Subgradients and its Applications to Problems of Optimization. Convex and Nonconvex Functions, Heldermann, Berlin 1981MATHGoogle Scholar
  13. 13.
    Clarke, F.H.: Optimization and Nonsmooth Analysis, John Wiley 1983MATHGoogle Scholar
  14. 14.
    Hestenes, M.R.: Optimization Theory: The Finite Dimensional Case, Wiley, New York 1975MATHGoogle Scholar
  15. 15.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics, Convex and Nonconvex Energy Functions, Birkhäuser, Basel, Boston 1985Google Scholar
  16. 16.
    Heinz, C.: Vorlesungen über analytische Mechanik, lectures given at RWTH Aachen, not yet publishedGoogle Scholar
  17. 17.
    Heinz, C: Neue Aspekte in der Feldtheorie, Acta Mechanica 41(1981), 23–33CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kilmister, C.W. and J.E. Reeve, Rational Mechanics, Longmans, London 1966MATHGoogle Scholar
  19. 19.
    May, H.-O. and P.D. Panagiotopoulos: F.H. Clarke’s Generalized Gradient and Fourier’s Principle, ZAMM 65(1985), 125–126ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Päsler, M.: Prinzipe der Mechanik, de Gruyter, Berlin 1968CrossRefMATHGoogle Scholar
  21. 21.
    Dirac, P.A.M.: Homogeneous Variables in Classical Dynamics, Proc. Camb. Phil. Soc. 29(1933), 389–400ADSCrossRefGoogle Scholar
  22. 22.
    Weber, R.W.: Kanonische Theorie nichtholonomer Systeme, Thesis, ETH Zürich 1981Google Scholar
  23. 23.
    May, H.-O.: Variational Principles and Differential Inclusions for Unilateral Constraints in Analytical Mechanics, Meccanica 19(1984), 315–319CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Pars, L.A.: A Treatise on Analytical Mechanics, Heinemann 1968Google Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • H. O. May
    • 1
  1. 1.Institute for Technical MechanicsRWTH AachenGermany

Personalised recommendations