Dynamics in the Presence of Unilateral Contacts and Dry Friction: A Numerical Approach

  • M. Jean
  • J. J. Moreau
Part of the International Centre for Mechanical Sciences book series (CISM, volume 304)


This paper is essentially devoted to mechanical systems with finite degree of freedom. However, as a test for adapting the proposed numerical methods to continuous systems, the representation of a one-dimensional medium by a finite chain of mass points is presented in fine.


Slip Velocity Differential Inclusion Virtual Displacement Smooth Motion External Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moreau, J.J., Standard inelastic shocks and the dynamics of unilateral constraints, in: Unilateral Problems in Structural Analysis, CISM Courses and Lectures n° 288 (Ed. G. Del Piero and F. Maceri), Springer-Verlag, Wien-New York 1985, 173–221.Google Scholar
  2. 2.
    Delassus, E., Considerations sur le frottement de glissement, Nouv. Ann. de Mathématiques, 4ème Ser., 20 (1920), 485–496.Google Scholar
  3. 3.
    Pérès, J., Mécanique Générale, Massor, Paris, 1953.MATHGoogle Scholar
  4. 4.
    Jean, M. and Pratt, E., A system of rigid bodies with dry friction, Int. J. Engng. Sci., 23 (1985), 497–513.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Moreau, J.J., Sur les lois de frottement, de plasticité et de viscosité, CR. Acad. Sci. Paris, Sér. A, 271 (1970), 608–611.Google Scholar
  6. 6.
    Moreau, J.J., Application of convex analysis to some problems of dry friction, in: Trends in Applications of Pure Mathematics to Mechanics, vol. II (Ed.H. Zorski), Pitman, London-San Francisco-Melbourne 1979, 263–280.Google Scholar
  7. 7.
    Moreau, J.J., Dynamique de systèmes à liaisons unilatérales avec frottement sec éventuel; essais numériques, Université des Sciences et Techniques du Languedoc, Montpellier, Lab. de Mécanique Générale des Milieux Continus, Note Technique 85–1, 1985.Google Scholar
  8. 8.
    Lötstedt, P., Coulomb friction in two-dimensional rigid body systems, Z. Angew. Math. u. Mech. 61 (1981), 605–615.CrossRefMATHGoogle Scholar
  9. 9.
    Lötstedt, P., Mechanical systems of rigid bodies subject to unilateral constraints, SIAM J. Appl. Math. 42(1982), 281–296.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Moreau, J.J., On unilateral constraints, friction and plasticity, in: New Variational Techniques in Mathematical Physics, CIME 2° ciclo 1973, (Ed. G. Capriz and G. Stampacchia), Edizioni Cremonese, Roma, 1974, 175–322.Google Scholar
  11. 11.
    Moreau, J.J., Mécanique classique, vol. 2 Masson, Paris, 1971.MATHGoogle Scholar
  12. 12.
    Jean, M., Un algorithme numérique simple pour un système d’oscillateurs avec frottement de Coulomb sur un plan, Université des Sciences et Techniques du Languedoc, Lab. de Mécanique Générale des Milieux Continus, Note Technique 85–2, 1985.Google Scholar
  13. 13.
    Halphen, B. and Nguyen, Q.S., Sur les matériaux standards généralisés, J. de Mécanique, 14, 39, 1975.MATHGoogle Scholar
  14. 14.
    Lax, P.D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional Conf. Sér. in Appl. Math., n° 11, S.I.A.M., Philadelphia, 1973.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1987

Authors and Affiliations

  • M. Jean
    • 1
  • J. J. Moreau
    • 1
  1. 1.Laboratoire de Mécanique Générale des Milieux ContinusUniversité des Sciences et Techniques du LanguedocFrance

Personalised recommendations