Structural Dynamics

  • M. Geradin
  • A. Huck
  • B. Fraeijs de Veubeke
Part of the International Centre for Mechanical Sciences book series (CISM, volume 126)


Linear structural dynamics is one of the many field problems of engineering that can receive a variational formulation. The classical approach is the kinematical one, and the discretization of the Hamiltonian variational principle in finite elements results from a polynomial approximation of the displacement field inside each separate region. Continuity will be secured through identification of a suitable set of generalized interface displacements, in which case the kinematical elements are said to be conforming. Integrating the kinetic and potential energies of the finite elements leads to lagrangian, or so-called coherent, mass and stiffness matrices.


Variational Principle Surface Traction Eigenvalue Analysis Rayleigh Quotient Cantilever Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barton, M.V., 1951, Jnl. Appl. Mech. 18, 129–134 “Vibration of rectangular and skew cantilever plates”.Google Scholar
  2. [2]
    Courant, R. and Hilbert, D., 1937, Interscience Publishers, N.Y., ’Methods of Mathematical Physics“, vol. 1, (English Edition, 1953).Google Scholar
  3. [3]
    Cox, H.L., 1971, Aircraft Engineering, vol. XXXIII, no 383, pp 2–7, “Vibration of missiles”, part 1.Google Scholar
  4. [4]
    Craig, R. and Bampton M., 1968, AIAA Jnl. vol. 6, n° 7, pp. 1313–1319, “Coupling of substructures for dynamic analysis”.Google Scholar
  5. [5]
    Craig, R. and Bampton, M., 1971, The Aeronautical Jnl. of the R.A.S., vol. 75, pp. 287–290, “On the iterative solution of semi-definite eigenvalue problems”Google Scholar
  6. [6]
    Crandall, S.H., 1957, Proc. 9th int. Cong. Appl. Mech. (Brussels), vol. 5, pp. 80–87, “Complementary extremum principle for dynamics”.Google Scholar
  7. [7]
    Dawe, D.J., 1966, Jnl. Strain Analysis, vol. 1, n° 3, “Parallelogrammic elements in the solution of rhombic cantilever plate problems”.Google Scholar
  8. [8]
    Fraeijs de Veubeke, B.M., 1955, Jnl of Aeron. Sciences, vol. 22, no 10, pp. 710–720, “Iteration in semi definite eigenvalue problems”.Google Scholar
  9. [9]
    Fraeijs de Veubeke, B.M., 1968, Int. Jnl. of Solids and Structures, vol. 4, “A conforming element for plate bending”.Google Scholar
  10. [10]
    Fraeijs de Veubeke, B.M. and Sander, G., 1968, Int. Jnl. of Solids and Structures, vol. 4, “An equiibrium element for plate bending”.Google Scholar
  11. [11]
    Fraeijs de Veubeke, B.M., Annales de la Société Scientifique de Bruxelles, T. 70, no 1, pp. 37–61, 1956, ‘Matrices de projection et techniques d’itération“.Google Scholar
  12. [12]
    Fraeijs de Veubeke, B.M., 1971, Nato Advanced Study Institute on finite element methods in continuum mechanics (LISBON), “Duality in structural analysis by finite elements”.Google Scholar
  13. [13]
    Fraeijs de Veubeke, B.M., 1971, Nato Advanced Study Institute on finite element methods in continuum mechanics ( LISBON), ‘The dual principle of elastodynamics - finite element applications“. The University of Alabama in Huntsville Press 1972.Google Scholar
  14. [14]
    Fraeijs de Veubeke, B.M., 1965, Fluid Dynamics Transactions, Proceedings of the Polish Conference of Jurata, Warsaw, “Variational Principle in Fluid Mechanics:’Google Scholar
  15. [15]
    Fraeijs de Veubeke, B.M., 1965, ch. 9 of Stress Analysis Wiley, “Displacement and equilibrium models in the finite element method”.Google Scholar
  16. [16]
    Geradin, M., 1970, LTAS, Université de Liège, Rpt Vf-9 “Notice d’utilization du programme d’analyse dynamique DYNAMG”.Google Scholar
  17. [17]
    Geradin, M., 1971, Jnl of Sound and Vibration, vol. 19, no 1, “Error bounds for eigenvalues analysis by elimination of variables”.Google Scholar
  18. [18]
    Geradin, M., Jnl of Sound and Vibration, vol. 19, N°3 “The computational efficiency of a new minimization algorithm for eigenvalue analysis”Google Scholar
  19. [19]
    Geradin, M., 1971, Symposium IUTAM “High Speed Computing of Elastic Structures Congrès et Colloques de l’Université de Liège, Place du XX Août, 16, B-4000 LIEGE. ”Computational efficiency of equilibrium models in eigenvalue analysis“.Google Scholar
  20. [20]
    Geradin, M., 1971, LTAS, Université de Liège, Rpt VA-5 “The assumed stress variational principles in elastodynamics”.Google Scholar
  21. [21]
    Geradin, M., Faculté des Sciences Appliquées de Liège, Ph.D. Thesis, 1972 “Analyse dynamique duale des structures par la méthode des éléments finis”.Google Scholar
  22. [22]
    Geradin, M., 1969, LTAS, Université de Liège, Rpt VF-5 “Analyse dynamique de structures complexes par combinaison linéaire de modes statiques”.Google Scholar
  23. [23]
    Gladwell, G.M.L., 1964, Jnl of Sound and Vibration, vol. 1 41–59, “Branch modes analysis of vibrating systems”.Google Scholar
  24. [24]
    Gladwell, G.M.L. and Zimmermann, G., 1966, Jnl of Sound and Vibration, vol. 3, 233–241, “ On energy and complementary formulations of acoustic and structural vibration problems”.Google Scholar
  25. [25]
    Gould, S.H., 1957, University of Toronto, “Variational methods for eigenvalue problems”. Google Scholar
  26. [26]
    Hurty, 1965, AIAA Jnl, vol. 3, n°4, 678–685, “Dynamic analysis of structural systems using component modes”.Google Scholar
  27. [27]
    Irons, B.M., 1965, AIAA Jnl, vol.3, n°5, 961–962, “Structural eigenvalue problems: elimination of unwanted variaples ”.Google Scholar
  28. [28]
    Kato, T., 1949, J. Phys. Soc. Japan, vol.4, 334, “On the upper and lower bounds of Eigenvalues”.Google Scholar
  29. [29]
    Kestens, J., 1956, Mémoires de l’Académie Royale de Belgique, Classe des Sciences, vol. 29, n° 4, “Le problème aux valeurs propres normal et bornes supérieures et infèrieures par la méthode des itérations”.Google Scholar
  30. [30]
    Kestens, J., 1961, Mémoires de l’Académie Royale de Belgique, Classe des Sciences, vol. 32, no 5, Le problème naturel aux valeurs propres“.Google Scholar
  31. [31]
    Penrose, R., 1951, Proc. Cambridge Phil. Soc., vol. 51, PP. 406–413, “A generalized inverse for matrices”.Google Scholar
  32. [32]
    Sander, G., 1969 Collection des Publications de la Faculté des Sciences Appliquées, Liège, Ph.D. Thesis, “Application de la méthode des éléments finis à la flexion des plaques”.Google Scholar
  33. [33]
    Sander, G., 1970 Symposiom IUTAM,“High Speed Computing of elastic Structures” Congrès et Colloques de l’Université de Liège, Place du XX Août, 16, B-4000 Liège, “Application of the dual analysis principle”.Google Scholar
  34. [34]
    Sander, G. and Beckers, P., 1971, 4th Conference on Matrix Methods in Structural Mechanics Wright Patterson AFB, OHIO, “Improvements of finite element solutions for structural and non structural applications”.Google Scholar
  35. [35]
    Tabarrok, B. and Karnopp, B.H., 1968, Jnl of Sound and Vibration, vol. 8, n°3, PP. 469–481, “On duality in the oscillations of framed structures ”.Google Scholar
  36. [36]
    Tabarrok, B. and Sakaguchi, R.L., 1970, Int. Jnl for Num. Meth. in Eng. vol. 2, 283–293, “Calculations of plate frequencies from complementary energy formulation”.Google Scholar
  37. [37]
    Temple, G., 1952, Proc. Roy. Soc. A211, pp. 204–224, “The accuracy of Rayleigh’s method of calculating the natural frequencies of vibrating systems”.Google Scholar
  38. [38]
    Toupin, R.A., 1952, Jnl Appl. Mech., “A variational principle for the mesh—type analysis of a mechanical system”.Google Scholar
  39. [39]
    Wilkinson, J.H., 1965, Clarendon Press, Oxford, “The algebraic eigenvalue problem”. Google Scholar
  40. [40]
    Wilkinson, J.H., 1961, Ch. 3 of: ’Mathematical methods for digital computers; vol. 2, Ed. Ralston and Wilf, Wiley; “The solution of ill—conditioned linear equations”.Google Scholar
  41. [41]
    Yu Chen, 1964, Jnl Franklin Inst., vol. 278, n°1, pp. 1–7, “Remarks on variational principles in elastodynamics ”.Google Scholar
  42. [42]
    Zienkiewicz, 0.C., 1971, McGraw Hill, London; “The finite Element method in engineering science”.Google Scholar
  43. [43]
    Zienkiewicz, 0.C., Irons, B.M. and Anderson, R.G., 1968, Jnl of Solids and Structures, 4, 1031–1035, “Vibration and stability of plates using finite elements”.Google Scholar
  44. [1]
    B.M. Fraeijs de Veubeke, “Iteration in semidefinite eigen-value problems”, J.A.S., vol. 22, N° 10, October 1955Google Scholar
  45. [2]
    D. Williams, “Displacements of a Linear Elastic System under a Given Transient load”, The Aeronautical Quaterly, vol. 1, August 1949Google Scholar
  46. [3]
    R.L. Bisplinghoff, G. Isakson, T.H.H. Pian, “Methods in Transient Stress Analysis”, J.A.S., vol. 17, no 5, May 1950.Google Scholar
  47. [4]
    J.W. Mar, T.H.H. Pian, J.M. Calligeros, “A note on methods for the determination of transient stresses; J.A.S., January 1956.Google Scholar
  48. [5]
    J.W.S. Rayleigh, “The theory of Sound”,(Volume I ) Dover, New York, 1945.Google Scholar
  49. [6]
    J.C. Houbolt, “A recurrence matrix solution for the dynamic response of elastic aircraft”, J.A.S., vol. 17, n° 9, September 1950.Google Scholar
  50. [7]
    R.S. Dunham, R.E. Nickell, D.C. Stickler, “Integration operators for transient structural response, Computers and Structures”, vol. 2, no 1/2, February 1972.Google Scholar

Copyright information

© Springer-Verlag Wien 1972

Authors and Affiliations

  • M. Geradin
    • 1
  • A. Huck
    • 1
  • B. Fraeijs de Veubeke
    • 1
  1. 1.Laboratoire de Techniques Aéronautiques et SpatialesUniversité de LiègeBelgium

Personalised recommendations