Advertisement

Analysis

  • M. Esslinger
  • B. Geier
Part of the International Centre for Mechanical Sciences book series (CISM, volume 236)

Keywords

Spherical Shell Stress Function Radial Displacement Shell Theory Shallow Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    DONNELL, L.H.: A new Theory for the Buckling of Thin Cylinders under Axial Compression and Bending. Trans. Asme Vol. 56 (1934) pp. 795–806Google Scholar
  2. [2]
    FLÜGGE, W.: Statik und Dynamik der Schalen. Springer-Verlag, Berlin-GöttingenHei delberg ( 1957), 286 S. zweite neubearbeitete AuflageGoogle Scholar
  3. [3]
    THIELEMANN, W.F.: New Development in the Nonlinear Theories of the Buckling of Thin Cylindrical Shells. “Aeronautics and AstronauticsM, Pergamon Press (1960) pp. 76–121Google Scholar
  4. [4]
    APPEL, H., GEIER, B.: Axialsymmetrische Verformungen von exzentrisch versteiften orthotropen Kreiszylinderschalen. Dlr FB 67–82 (1967), 68 S.Google Scholar
  5. [5]
    GEIER, B.: Das Beulverhalten versteifter Zylinderschalen. Teil 1: Differentialgleichungen. Z.Flugwiss. Bd. 14 (1966), S. 306–490MATHGoogle Scholar
  6. [6]
    MARGUERRE, K.: Zur Theorie der gekrümmten Platte großer Formänderung. Jahrb. d. deutschen Luftfahrtforsch. ( 1939), S.I 413–1 4l8Google Scholar
  7. [7]
    KOITER, W.T.: On the Nonlinear Theory of Thin Elastic Shells. Lab. of Eng. Mech., Dept. of Mech. Engng., Technol. Univ., Delft, Netherlands, Rep. No. 310Google Scholar
  8. [8]
    KOITER, W.T,: On the Stability Elastic Equilibrium. Nasa TT F-10, 8 33Google Scholar
  9. [9]
    BUDIANSKY, B.: Dynamic Buckling of Elastic Struc- tures: Criteria and Estimates. Nasa-CR 66072 (1965), 49 pp.Google Scholar
  10. [10]
    BUDIANSKY, B., HUTCHINSON, J.W,: Dynamic Buckling of Imperfection Sensitive Structures. Harvard University, Cambridge, Mass., Eng. & App. Phys. Div. TR-18, June (1964), 40 pp.Google Scholar
  11. [11]
    ESSLINGER, M.: Nachbeulrechnung für einen unendlich langen isotropen Kreiszylinder. Dir-FB 72–37 (1972). 42 S.Google Scholar
  12. [12]
    ESSLINGER, M.: Ein Verfahren zur theoretischen Untersuchung des Beul- und Nachbeu]- Verhaltens dünnwandiger Kreiszylinder mit eingespannten Rändern. Dlr-FB 68–70 (1968), 127 S.Google Scholar
  13. [13]
    KOGA, T., HOFF, N.J.: The Axisymmetric Buckling of Ini- tially Imperfect Complete Spherical Shells. Int. J. Solids and Struct. Vol. 5 (1969), pp. 679–697CrossRefMATHGoogle Scholar
  14. [14]
    REISSNER, E.: On Axisymmetrical Deformations of Thin Shells of Revolution. Proc. Symp. Appl. Math., Vol.Iii (1950), pp.27–52, McGraw-Hil1, New YorkGoogle Scholar
  15. [15]
    ESSLINGER, M.: Statische Berechnung von Kesselböden. Springer-Verlag (1952), DissertationCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • M. Esslinger
    • 1
  • B. Geier
    • 1
  1. 1.Institut für Flugzeugbau BraunschweigGermany

Personalised recommendations