Mathematical Methods in Vehicle Dynamics

  • Peter C. Müller
Part of the International Centre for Mechanical Sciences book series (CISM, volume 274)


The dynamic analysis of deterministic and random vehicle vibrations and the consequences especially to passenger comfort requires an integrated study of three subproblems:
  1. (i)

    modeling and characterization of guideway roughness

  2. (ii)

    prediction of vehicle motion for traversal of a given guideway

  3. (iii)

    prediction or characterization of passenger response to vibration exposure.



Power Spectral Density Covariance Analysis Vehicle Dynamics Perception Variable Vibration Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmidt, G., Simulationstechnik, Oldenbourg, München-Wien, 1980.Google Scholar
  2. 2.
    Korn, G. A., Korn, T. M., Electronic analog and hybrid computers, Mc Graw-Hill, New York, 1972.MATHGoogle Scholar
  3. 3.
    Korn, G. A., Wait, J. V., Digital continuous-system simulation, Prentice-Hall, Englewood Cliffs, 1978.Google Scholar
  4. 4.
    Lapidus, L., Seinfeld, J. H., Numerical solution of ordinary differential equations, Academy Press, New York-London, 1971.MATHGoogle Scholar
  5. 5.
    Grigorieff, R. D., Numerik gewöhnlicher Differentialgleichungen, Vol. 1 and 2, Teubner, Stuttgart, 1972 and 1977.Google Scholar
  6. 6.
    Federl, U., Numerische Integration im Zeitbereich, in CCG Lehrgang O R 2. 2, Simulationsmodell für spurgebundene Fahrzeuge, DFVLR, Oberpfaffenhofen, 1977.Google Scholar
  7. 7.
    Bendat, J. S., Piersol, A. G., Random data: Analysis and measurement procedures, Wiley, New York, 1971.MATHGoogle Scholar
  8. 8.
    Beauchamp, K. G., Signal processing, George Allan & Unwin, London, 1973.Google Scholar
  9. 9.
    Brigham, E. O., The fast Fourier transform, Prentice-Hall, Englewood Cliffs, 1974.MATHGoogle Scholar
  10. 10.
    Rabiner, L. R., Gold, B., Theory and application of digital signal processing, Prentice-Hall, Englewood Cliffs, 1975.Google Scholar
  11. 11.
    Stearns, S. D., Digital signal analysis, Haydon, Rochelle Park, 1975.MATHGoogle Scholar
  12. 12.
    Yuen, C. K., Fraser, D., Digital spectral analysis, CSIRO-Pitman, Melbourne-London, 1979.MATHGoogle Scholar
  13. 13.
    Müller, P. C., Schiehlen, W. O., Lineare Schwingungen, Akademische Verlagsgesellschaft, Wiesbaden, 1976.MATHGoogle Scholar
  14. 14.
    Smith, B. T., Boyle, J. M., Garbow, B. S., Ikebe, Y., Klema, V. C., Moler, C. B., Matrix eigensystem routines - EISPACK guide, Lect. Notes in Computer Science, Vol. 6, Springer, Berlin, Heidelberg, New York, 1974.Google Scholar
  15. 15.
    Garbow, B. S., Boyle, J. M., Dongarra, J. J., Moler, C. B., Matrix eigensystem routines - EISPACK guide extension, Lect. Notes in Computer Science, Vol. 51, Springer, Berlin, Heidelberg, New York, 1977.Google Scholar
  16. 16.
    Müller, P. C., Schiehlen, W. O., Forced linear ‘vibrations, CISM Courses and Lectures No. 172, Springer, Wien, New York, 1977.Google Scholar
  17. 17.
    Dongarra, J. J., Moler, C. B., Bunch, J. R., Stewart, G. W., LINPACK user’s guide, Society of Industrial and Applied Mathematics (SIAM), Philadelphia, 1979.Google Scholar
  18. 18.
    Anderson, B. D. 0., The inverse problem of stationary covariance generation, J. Stat. Physics 1, 133, 1969.CrossRefGoogle Scholar
  19. 19.
    Schwarz, H., Mehrfachregelungen, Vol. 1, chapter IV.8 and Vol. 2, chapter VIII.5, Springer, Berlin, Heidelberg, New York, 1967 and 1971.Google Scholar
  20. 20.
    Goßmann, E., Kovarianzanalyse mechanischer Zufallsschwingungen bei Darstellung der mehrfachkorrelierten Erregungen durch stochastische Differentialgleichungen, Mitteilungen aus dem Institut für Mechanik, Ruhr-Universität Bochum, Nr. 24, February 1981.Google Scholar
  21. 21.
    Schiehlen, W., Kovarianzanalyse von Zufallsschwingungen, in VDI-Bericht 221, 105, VDI, Dusseldorf, 1974.Google Scholar
  22. 22.
    Müller, P. C., Lineare stationäre Zufallsschwingungen bei farbigem Rauschen, Z. Angew. Math. Mech. 58, T 164, 1978.Google Scholar
  23. 23.
    Smith, R. A., Matrix equation XA + BX = C, SIAM J. Appl. Math. 16, 198, 1968.MATHGoogle Scholar
  24. 24.
    Bartels, R. H., Stewart, G. W., Solution of the matrix equation AX + BX = C, Comm. ACM 15, 820, 1972.CrossRefGoogle Scholar
  25. 25.
    Koupan, A., Müller, P. C., Zur numerischen Lösung der Ljapunovschen Matrizenaleichunq ATP + PA = -Q, Regelungstechnik 24, 167, 1976.MATHGoogle Scholar
  26. 26.
    Müller, P. C., Popp, K., Kovarianzanalyse von linearen Zufallsschwingungen mit zeitlich verschobenen Erregerprozessen, Z. Angew. Math. Mech. 59, T 144, 1979.Google Scholar
  27. 27.
    Hedrick, J. K., Billington, G. F., Dreesbach, D. A., Analysis, design and optimization of high speed vehicle suspensions using state variable technique, J. Dyn. Syst. 4eas. Control, Transact. ASME, Ser. G. 96, 193, 1974.Google Scholar
  28. 28.
    Müller, P. C., Popp, K., Schiehlen, W. 0., Covariance analysis of nonlinear stochastic cuidewav - vehicle - systems, in Proc. 6th IAVSD Symp. Dynamics of Vehicles on Roads and Tracks, Berlin, Sept. 3–7, 1979, Willumeit, H.-P., Ed., Swets & Zeitlinger, Amsterdam - Lisse, 1980.Google Scholar
  29. 29.
    Cooperrider, N. K., Hedrick, J. K., Law, E. H., Malstrom, C. W., The application of quasilinearization techniques to the prediction of nonlinear railway vehicle response, Vehicle Systems Dynamics 4, no. 2–3, 1975.Google Scholar
  30. 30.
    Hull, R., Cooperrider, N. K., Influence of nonlinear wheel-rail contact geometry on stability of rail vehicles, Transact. ASME, J. Engng. Industry 99, no. 1, 1977.Google Scholar
  31. 31.
    Hannebrink, D. N., Lee, H. S. H., Weinstock, H., Hedrick, J. K., Influence of axle load, track gauge and wheel profile on rail vehicle hunting, Transact. AS’’E, J. Engng. Industry 99, no. 1, 1977.Google Scholar
  32. 32.
    Hauschild, W., The application of quasilinearization to the limit cycle behaviour of the nonlinear wheel-rail system, In Proc. 6th IAVSD Symp. Dynamics of Vehicles on Roads and Tracks, Berlin, Sept. 3–7, 1979, Willumeit, H.-P., Ed., Swets & Zeitlinger, Amsterdam - Lisse, 1980.Google Scholar
  33. 33.
    Hauschild, W., Grenzzykelberechnung am nichtlinearen Rad-Schiene-System mit Hilfe der Duasilinearisierung, Dissertation D 83, Technische Universität Berlin, 1981.Google Scholar
  34. 34.
    Hedrick, J. K., Cooperrider, N. K., Law, E. H., The application of quasi-linearization techniques to rail vehicle analysis, Final Report for U.S. Department of Transportation, DOT - TSC - 902, 1978.Google Scholar
  35. 35.
    Müller, P. C., Popp, K., Schiehlen, W. 0., Berechnungsverfahren für stochastische Fahrzeugschwingungen, Ing.-Arch. 49, 235, 1980.CrossRefMATHGoogle Scholar
  36. 36.
    Ortega, J. ‘4., Rheinboldt, W. C., Iterative solution of nonlinear equations in several variables, Academic Press, New York, San Francisco, London, 1970.Google Scholar
  37. 37.
    Schwetlick, H, Numerische Lösung nichtlinearer Gleichungen, Oldenbourg, München-Wien, 1979.Google Scholar
  38. 38.
    Müller, P. C., Approximate methods for investigating the stability of limit cycles, General lecture, Euromech Colloquium 141 “Stationary Motions of Nonlinear Mechanical Systems”, Twente University of Technology, Enschede, June 23–25, 1981.Google Scholar
  39. 39.
    Müller, P. C., Kovarianzanalyse von stationären nichtlinearen Zufallsschwingungen, Z. Angew. Math. Mech. 59, T 142, 1979.Google Scholar
  40. 40.
    Smith, C. C., Literature review - automobile ride quality, The Shock and vibration Digest 12, no. 4, 15, 1980.CrossRefGoogle Scholar
  41. 41.
    International Standard ISO 2631, Guide for the evaluation of human exposure to whole-body vibrations, International Organization for Standardization, 1974.Google Scholar
  42. 42.
    VDI - Richtlinie VDI 2057 (Entwurf), Beurteilung der Einwirkung mechanischer Schwingungen auf den Menschen, Blatt 1 (1975), Blatt 2 (1976), Blatt 3 ( 1977 ), Verein Deutscher Ingenieure, Düsseldorf.Google Scholar
  43. 43.
    Scheibe, W., Beurteilung von Belastung, Aktivität und Beanspruchung des Menschen bei kontinuierlicher und unterbrochener Exposition mit vertikalen Fahrzeugschwingungen in Simulations-und Feldexperimenten, Fortschr.-Ber. VDI - Z. Reihe 11, Nr. 31, Verein Deutscher Ingenieure, Düsseldorf, 1979.Google Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • Peter C. Müller
    • 1
  1. 1.Department of Safety Control EngineeringUniversity of WuppertalWuppertal 1Germany

Personalised recommendations