Advertisement

Mathematical Modeling and Control System Design of Maglev Vehicles

Part of the International Centre for Mechanical Sciences book series (CISM, volume 274)

Abstract

Magnetically levitated vehicles are under development for applications in rapid transit systems in highly populated areas as well as for high speed transportation over large distances. The feasibility of electromagnetic guidance and control, particularly for high speed operations in connection with the use of linear induction motors for propulsion, has been shown by various test-vehicle runs, cf. Table 1.

Keywords

Multibody System Control System Design Ride Comfort Magnetic Suspension High Speed Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahke, E.: Transportsysteme heute und morgen. Krauskopf-Verlag, Mainz, 1973.Google Scholar
  2. 2.
    Caywood, W.C., Dailey, G., O’Connor, J.S., Stadter, J.T.: A General Purpose Computer Program for the Dynamic Simulation of Vehicle-Guideway Interactions. The Johns Hopkins University, Applied Physics Laboratory, Report No. APL/JHU CP 008 TPR 021, Silver Spring, Md., 1972Google Scholar
  3. 3.
    Caywood, W.C., Rubinstein, N.: Ride Quality and Guideway Roughness Measurements of the Transpo’72 PRT System. High Speed Ground Transe. J. 8, No. 3, 1974, pp. 214–225.Google Scholar
  4. 4.
    Duffek, W., Kortam, W., Wallrapp, 0.: A General Purpose Programm for the Simulation of Vehicle-Guideway Interaction Dynamics. 5th VDS - 2nd IUTAM Symposium on Dynamics of Vehicles on Roads and Tracks, Wien, 1977.Google Scholar
  5. 5.
    Frÿba, L.: Vibration of Solids and Structures Under Moving Loads. Noordhoff Int. Publ., Groningen, 1972.Google Scholar
  6. 6.
    Gottzein, E., Brock, K.-H., Schneider, E., Pfefferl, J.: Control Aspects of a Magnetic Levitation High Speed Test Vehicle. Automatica 13, 1977, pp. 201–223.CrossRefGoogle Scholar
  7. 7.
    Gottzein, E., Crämer, W., Ossenberg, F.W., Roche, Ch.: Optimal Control of a Maglev Vehicle. Proc. of the IUTAM Symposium on the Dynamics of Vehicles on Roads and Railway Tracks, Delft, 1975, pp. 504–530.Google Scholar
  8. 8.
    Gottzein, E., Crämer, W.: Critical Evaluation of Multivariable Control Techniques based on Maglev Vehicle Design. 4th IFAC Symp. Multivariable Technological System, Fredericton, N.B., Canada, July 4–7, 1977.Google Scholar
  9. 9.
    Gottzein, E., Lange, B.: Magnetic Suspension Control System for the German High Speed Train. 5th IFAC Symposium Automatic Control in Space, Genua, Juni 1973, in: Automatica 11, No. 5, 1975.Google Scholar
  10. 10.
    Gottzein, E., Lange, B., Ossenberg-Franzes, F.: Control System Concept for a Passenger Carrying Maglev Vehicle. High Speed Ground Transp. J. 9, No. 1, 1975, pp. 435–447.Google Scholar
  11. 11.
    Gottzein, E., Miller, L., Meisinger, R.: Magnetic Suspension Control System for High Speed Ground Transportation Vehicles. World Electrotechnical Congress. Section 7, Paper 07, Moscow, 1977.Google Scholar
  12. 12.
    Guenther, Chr.: A New Approach to High-Speed Tracked Vehicle Suspension Synthesis. In: Leondes, C.T. (ed.), Control and Dynamic Systems, Vol. 13, New York, San Francisco, London, 1977, pp. 71–133.Google Scholar
  13. 13.
    Hedrick, J.K. Billington, G.F., Dreesbach, D.A.: Analysis, Design and Optimization of High Speed Vehicle Suspension Using State Variable Techniques. J. 2n. Syst. Meas. Control, Trans. ASME 96, Ser. G, 1974, pp. 193–203.Google Scholar
  14. 14.
    Hedrick, J.K., Rayera, R.J., Anders, J.R.: The Effect of Elevated Guideway Construction Tolerances on Vehicle Ride Quality. J. Dyn. Syst. Meas. Control, Trans. ASME 97, Ser. G, 1975, pp. 408–416.Google Scholar
  15. 15.
    Hsu, C.S.: Impulsive Parametric Excitation: Theory. J. Appl. Mechanics,Trans. ASME, Juni 1972, pp. 551-558.Google Scholar
  16. 16.
    Hullender, D.A.: Analytical Models for Certain Guideway Irregularties. J. Dyn. Syst. Meas. Control, Trans. ASME 97, Ser. G, 1975, pp. 417–423.Google Scholar
  17. 17.
    Hullender, D.A., Bartley, T.M.: Defining Guideway Irregularity Power Spectra in Terms of Construction Tolerances and Constraints. High Speed Ground Transp. J. 9, No. 1, 1975, pp. 356-368.Google Scholar
  18. 18.
    ISO 2631: Guide for the Evaluation of Human Exposure to Whole-body Vibration, 1st Ed. 1974.Google Scholar
  19. 19.
    Jayawant, B.V.: Dynamical Aspects of Passenger Carrying Vehicles using Controlled D.C. Electromagnets. 5th VSD - 2nd IUTAM Symposium on Dynamics of Vehicles on Roads and Tracks. Wien 1977.Google Scholar
  20. 20.
    Katz, R.M., Nene, V.D., Rayera, R.J., Skalski, C.A.: Performance of Magnetic Suspensions for High Speed Vehicles Operating over Flexible Guideways. J. Dyn. Syst. Meas. Control, Trans. ASME 96, Ser. G, 1974, pp. 204–212.Google Scholar
  21. 21.
    Kemper, H.: Schwebebahn mit räderlosen Fahrzeugen, die an eisernen Fahrschienen mittels magnetischer Felder entlang geführt wird. Patentschrift Nr. 643316, 1937 (Patenterteilung 1934 ).Google Scholar
  22. 22.
    Kemper, H.: Schwebende Aufhängung durch elektromagnetische Kräfte: Eine Möglichkeit für eine grundsätzlich neue Fortbewegungsart. ETZ,April 1938, pp. 391-395.Google Scholar
  23. 23.
    Kemper,’H.: Elektrisch angetriebene Eisenbahnfahrzeuge mit elektromagnetischer Schwebeführung ETZ-A, Januar 1953, pp. 11–14.Google Scholar
  24. 24.
    Kortüm, W., Lehner, M., Richter, R.: Multibody Systems Containing Active Elements: Algorithmic Generation of Linearized System Equations, System Analysis and Order-Reduction. IUTAM Symposium Dynamics of Multibody Systems,Munich, Aug. 1977.Google Scholar
  25. 25.
    Kortüm, W., Richter, R.: Simulation of Multibody Vehicles Moving over Elastic Guideways. Vehicle System Dynamics 6, 1977, pp. 21 - 35.Google Scholar
  26. 26.
    Magnus, K. (Ed.): Dynamics of Multibody Systems. Proc. IUTAM Symp. Munich 1977.. Springer, Berlin, Heidelberg, New York, 1978.Google Scholar
  27. 27.
    Meisinger, R.: Optimale Regelung periodischer Systeme mit sprungförmiger Zustandsänderung. ZAMM 57, 1977, pp. 79–81.Google Scholar
  28. 28.
    Meisinger, R.: Beiträge zur Regelung einer Magnetschwebebahn auf elastischem Fahrweg. Dissertation, TU München, 1977.Google Scholar
  29. 29.
    Muckli, W.: Bahnsysteme mit berührungsfreier Fahrtechnik. ZEV-Glasers Annalen 100, No. 1, 1976, pp. 16–19.Google Scholar
  30. 30.
    Müller, P.C., Bremer, H., Breinl, W.: Tragregelsysteme mit Störgrößen-Kompensation für Magnetschwebefahrzeuge. Regelungstechnik 24, 1976,pp. 257–265.Google Scholar
  31. 31.
    Müller, P.C.: Design of Optimal State-Observers and its Application to Maglev Vehicle Suspension Control. 4th IFAC Symp. Multivariable Technological Systems,Fredericton, N.B., Canada, July 4–7, 1977.Google Scholar
  32. 32.
    Müller, P.C., Schiehlen, W.: Lineare Schwingungen. Akademische Verlagsgesellschaft, Wiesbaden, 1976.Google Scholar
  33. 33.
    Müller, P.C., Popp, K.: Kovarianzanalyse linearer Zufallsschwingungen mit zeitlich verschobenen Erregerprozessen. ZAMM 59, 1979, pp. T 144-T 146.Google Scholar
  34. 34.
    Müller, P.C., Popp, K., Schiehlen, W.: Covariance Analysis of Nonlinear Stochastic Guideway-Vehicle-Systems. 6th IAVSD Symp. on Dynamics of Vehicles on Roads and Tracks,Berlin 1979.Google Scholar
  35. 35.
    Pollard, M.G., Williams, R.A.: The Dynamic Behaviour of a Low Speed Electro-Magnetic Suspension. Proc. IUTAM Symp. on the Dynamics of Vehicles on Roads and Railway Tracks,Delft, 1975, pp. 445 -4 78.Google Scholar
  36. 36.
    Popp, K.: Näherungslösung für die Durchsenkungen eines Balkens unter einer Folge von wandernden Lasten. Ing.-Arch. 46, 1977, pp. 85–95.CrossRefMATHGoogle Scholar
  37. 37.
    Popp, K.: Stabilitätsuntersuchung für das System Magnetschwebefahrzeug-Fahrweg. ZAMM 58,1978, pp. T 165 - T 168.Google Scholar
  38. 38.
    Popp, K., Habeck, R., Breinl, W.: Untersuchungen zur Dynamik von Magnetschwebefahrzeugen auf elastischen Fahrwegen. Ing.-Arch. 46, 1977, pp. 1–19.CrossRefGoogle Scholar
  39. 39.
    Popp, K., Müller, P.C.: On the Stability of Interactive Multibody Systems with an Application to Maglev-Vehicle-Guideway Control System. IUTAM Symposium Dynamics of Multibody Systems, München, 1977.Google Scholar
  40. 40.
    Popp, K., Schiehlen, W.: Dynamics of Magnetically Levitated Vehicles on Flexible Guideways. Proc. IUTAW Symp. on the Dynamics of Vehicles on Roads and Railway Tracks,Delft, Aug. 1975, pp. 479-503.Google Scholar
  41. 41.
    Popp, K.: Zufallsschwingungen von Fahrzeugen auf elastischem Fahrweg am Beispiel einer Magnetschwebebahn. ZAMM 60, 1980, pp. 70–73.Google Scholar
  42. 42.
    Popp, K.: Beiträge zur Dynamik von Magnetschwebebahnen auf geständerten Fahrwegen. Habilitationsschrift, TU München 1978. Fortschr.-Ber. VDI-Z. Series 12, No. 35, Düsseldorf 1978.Google Scholar
  43. 43.
    Reister, D., Zurek, R.: Entwicklungsstand der elektro-magnetischen Schwebetechnik für eine Hochleistungsschnellbahn. ETR 25, No. 3, 1976, pp. 155–160.Google Scholar
  44. 44.
    Richardson, H.H., Wormley, D.M.: Transportation Vehicle/BeamElevated Guideway Dynamic Interactions: A State-of-the-Art-Review. J. Dyn. Syst. _pleas. Control,Trans. ASME 96, Ser. G, 1974, pp. 169179Google Scholar
  45. 45.
    Rothmayer, W.: Elektromagnetische Trag-und Führungssysteme (EMS). In: Lehrgang der Carl-Cranz-Cesellschaft 0 R2. 2 Simulationsmodell für Spurgebundene Fahrzeuge, Oberpfaffenhofen, 1977.Google Scholar
  46. 46.
    Smith, C.C., McGehee, D.Y., Healey, A.J.: The Prediction of Passenger Riding Comfort from Acceleration Data. J. Dyn. Syst.Meas. Control, Trans. ASME 100, Ser. G, 1978, pp. 34–41.Google Scholar
  47. 47.
    Smith, R.A.: Matrix Equation XA + BX = C. SIAM J. Appl. Math. 16, 1968, pp. 198–201.CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Snyder III, J.E., Wormley, D.N.: Dynamic Interactions Between Vehicles and Elevated, Flexible Randomly Irregular Guideways. J. Dyn. Syst. Meas. Control,Trans. ASME 99, Ser. G, 1977, pp. 23-33.Google Scholar
  49. 49.
    Sussmann, N.E.: Statistical Ground Excitation Models for High Speed Vehicle Dynamic Analysis. High Speed Ground Transp. J. 8, No. 3, 1974, oo, 145–154.Google Scholar
  50. 50.
    Ward, J.D.: The Furure Roles for Tracked Levitated Systems, J. Dyn. Syst. Meas. Control, Trans. ASME 96, Ser. G, 1974, pp. 1–11.Google Scholar
  51. 51.
    Yamamura, S.: Perfomance Analysis of Electromagnetically Levitated Vehicle. World Electrotechnical Congress, Section 7, Paper 09, Moscow, 1977.Google Scholar
  52. 52.
    Zurek, R.: Method of Levitation for Tracked High-Speed Traffic. Endeavour, Vol. 2, No. 3, 1978.Google Scholar
  53. 53.
    Breinl, W.: Entwurf eines parameterunempfindlichen Reglers am Beispiel einer Magnetschwebebahn. Regelungstechnik 28, 1980, pp. 87–92.MATHGoogle Scholar
  54. 54.
    Breinl, W.: Entwurf eines unempfindlichen Tragregelsystems für ein Magnetschwebefahrzeug. Dissertation, TU München, 1980.Google Scholar
  55. 55.
    Müller, P.C., Popp, K., Schiehlen, W.: Berechnungsverfahren für stochastische Fahrzeugschwingungen. Ing.-Arch. 49, 1980.Google Scholar
  56. 56.
    Popp, K.: Contributions to the Dynamic Analysis of Maglev Vehicles on Elevated Guideways. Shock and Vibration Bulletin, 1980.Google Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • K. Popp
    • 1
  1. 1.Universität HannoverGermany

Personalised recommendations