Advertisement

The Micropolar Thermoelasticity

  • W. Nowacki
Part of the International Centre for Mechanical Sciences book series (CISM, volume 151)

Abstract

Thermoelasticity investigates the. interaction of the field of deformation with the field of temperature and combines, on the basis of the thermodynamics of the irreversible processes, two separately developing branches of science, namely the theory of elasticity and the theory of heat conduction.

Keywords

Constitutive Equation Discrete Element Elastic Potential Continuous Body Micropolar Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Frackiewicz: “Geometry of a discrete set of points” Arch. Mech. Stos., 3, 1966.Google Scholar
  2. [2]
    H. Frackiewicz: “Mechanika osrodkow siatkowych (Mechanics of latticed media), in Polish, PWN, Warszawa 1971.Google Scholar
  3. [3]
    M. Kleiber: “Lattice-type shells as the problem of elas ticity of discretized bodies”, Bull. Acad. Polon. Sci., sci. techn., 1972 (in press)Google Scholar
  4. [4]
    M. Kleiber: “A consistent approximation in the linear theory of elastic lattice-type shells”, Bull. Acad. Polon. Sci., sci. techn., 3, 1971.Google Scholar
  5. [5]
    M. Kleiber, C. Wozniak: “On the equations of the linear elastic lattice shells”, Bull. Acad. Polon. Sci., sci. techn., 3, 1971.Google Scholar
  6. [6]
    M. Kleiber, Cz. Wozniak: “The equations of shallowlat tice shells”, Bull. Acad. Sci., sci. techn., 4, 1971.Google Scholar
  7. [7]
    M. Kleiber, Cz. Wozniak: “The edge effect in the theory of lattice shells” Bull. Acad. Polon. Sci., sci. techn. 4, 1971.Google Scholar
  8. [8]
    P. Klemm, S. Konieczny and Cz. Wozniak: “Dense elas tic lattices of regular structure, Lattice shells” Bull. Ac. Pol. Sci., sci. techn., 11, 1970.Google Scholar
  9. [9]
    P. Klemm and Cz. Wozniak: “Dense elastic lattices of regular structure”, Bull. Acad. Polon. Sci., sci. techn., 10, 1970.Google Scholar
  10. [10]
    P. Klemm and Cz. Wozniak: “Perforated circular plates under large deflections” Arch. Mech. Stos., 1, 1967.Google Scholar
  11. [11]
    S. Konieczny and Cz. Wozniak: “Lattice-type structures as the problem of discrete elasticity”, Bull. Acad. Polon. Sci., sci. techn., 12, 1971.Google Scholar
  12. [12]
    Cz. Wozniak and P. Klemm: “Non-linear theory. of the discrete Cosserat media”, Bull. Acad. Polon. Sci., sci. techn., 1972 (in press).Google Scholar
  13. [13]
    Cz. Wozniak: “Discrete Elasticity” Arch. Mech. Stos. 6, 1971.Google Scholar
  14. [14]
    Cz. Wozniak: “Basic concepts of mechanics of discret ized bodies”, Arch. Mech. Stos., 3–4, 1972.Google Scholar
  15. [15]
    Cz. Wozniak: “Discrete elastic Cosserat media” Arch. Mech. Stos., 1, 1973 (in press)•Google Scholar
  16. [16]
    Cz. Wozniak: “Equations of motion and laws of conser vation in the discrete elasticity”, 1, 1973 (in press)•Google Scholar
  17. [17]
    Cz. Wozniak: “Basic concepts of difference geometry” Ann. Polon. Math., 1972 (in press).Google Scholar
  18. [18]
    Cz. Wozniak: “Theory of variated states in discrete elasticity” Bull. Ac. Pol. Sci., sci. techn., 1972.Google Scholar
  19. [19]
    Cz. Wozniak: “Siatkowe dzwigary powierzchniowe (lat ticed shells and plates)” in Polish, PWN, War szawa, 1970.Google Scholar
  20. [20]
    O. C. Zienkiewicz: “The finite element method”, Mc Graw-Hill, London, 1967.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1974

Authors and Affiliations

  • W. Nowacki

There are no affiliations available

Personalised recommendations