Advertisement

Linear Micropolar Media with Constrained Rotations

  • G. Grioli
Part of the International Centre for Mechanical Sciences book series (CISM, volume 151)

Abstract

In the mechanics of non-polar continuous media all torques are assumed to be the moments of forces; it means that there are neither body couples nor couple stresses.

Keywords

Displacement Field Linear Theory Couple Stress Hyperelastic Material Cosserat Continuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cosserat E. and F.: “Sur la mecanique générale” C. R. Acad. Sci. Paris 145, 1139–1142 (1907).Google Scholar
  2. [2]
    Cosserat E. and F.: “Théorie des corps deformables” Paris, Hermann vi + 266 (1909).Google Scholar
  3. [3]
    Reissner E.: “Note on the theorem of the symmetry of the stress tensor” Journ. of Mathematics and Physics, vol. XXIII, pp. 192, (1944).MathSciNetGoogle Scholar
  4. [4]
    Signorini A.: “Trasformazioni termoelastiche finite” Mem. II, Ann. Matematica pura ed applicata, Ser. IV, 30. 1–72 (1949).CrossRefGoogle Scholar
  5. [5]
    Bodäszewski S.: “On the asymmetric state of stress and its applications to the mechanics of continuous mediums”, Archiwan Mechanicki Stosowanej 5, p. 351 (1953).Google Scholar
  6. [6]
    Truesdell C. and Toupin R.A.: “The classical field theories” Handbuch der Physik, B.III/I (1960).Google Scholar
  7. [7]
    Grioli G.: “Elasticità asimmetrica” Ann. Matematica pura ed appl. IV, 4, pp. 389–418 (1960).CrossRefMathSciNetGoogle Scholar
  8. [8]
    Grioli G.: “Onde di discontinuitâ ed elasticità asimme trica” Acc. Nazionale del Lincei, S. VIII, vol. XIXX, fasc. 5 (1960).Google Scholar
  9. [9]
    Aero E.L. and Kuvshinskii E. V.: “Fundamental equations of the theory of elastic media with rotationally interacting particles” Fisika Tverdogo Tela 2, pp. 1399–1409 (1960).Google Scholar
  10. [10]
    Ericksen J.L., Arch. Rat. Mech. Anal. 4, 231 (1960).CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Ericksen J.L., Trans. Soc. Rheol. 4, 29 (1960).CrossRefMathSciNetGoogle Scholar
  12. [12]
    Ericksen J.L., ibidem 5, 23 (1960).Google Scholar
  13. [13]
    Grioli G.: “Mathematical theory of elastic equilibrium (Recent results)” Ergebnisse der angewandten Mathematik pp. 141–160 (1962).Google Scholar
  14. [14]
    Toupin R.A.: “Elastic materials with couple stress” Arch. Rat. Mech. and Anal., v. 11 n. 5 (1962).Google Scholar
  15. [15]
    Mindlin R. D. and Tiersten H. F.: “Effects of couple-stress in linear elasticity”, Arch. Rat. Mech. and Anal., v. 11 n. 5 (1962).Google Scholar
  16. [16]
    Galletto D. “Sulle equazioni in coordinate generali del la statica dei continui con caratteristiche di tensione asimmetriche ” Afin. dell’Universitâ di Ferrara S. VII, Sci. Mat., vol. X n. 5 (1962).Google Scholar
  17. [17]
    Grioli G.: “Sulla meccanica dei continui a trasformazioni reversibili con caratteristiche di tensione asimmetriche” Seminari dell’Ist. Nazionale di Alta Matematica, Ed. Cremonese (1962–63).Google Scholar
  18. [18]
    Bressan A.: “Sui sistemi continui nel caso simmetrico” Ann. Mat. pura ed appl. S. IV, T. 72 (1963).Google Scholar
  19. [19]
    Bressan A.: “Qualche teorema di cinematica delle deformazioni finite” Atti dell’Ist. Veneto di Scien ze, Lettere ed Arti, T. CXXI Cl. di Sc. Mat. e Nat. (1963).Google Scholar
  20. [20]
    Galletto D.: “Nuove forme per le equazioni in coordinate generali della statica dei continui con caratteristiche di tensione asimmetriche” Ann. d. Scuola Normale Superiore di Pisa S.III, vol. XVII, fasc. I V (1963).Google Scholar
  21. [21]
    Toupin R.: “Theories of elasticity with couple stress” Arch. Rat. Mech. and Anal. 17, pp. 85–112 (1964).ADSCrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    Mindlin R. D.: “Microstructure in linear elasticity” Arch. Rat. Mech. and Anal., 16, pp. 51–78, (1964).CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    Grioli G.: “Problemi d’integrazione e formulazione integrale del problema fondamentale dgll’elastostatica” Simp. Int. Bulle Applic. dell’Analisi alla Fisica Matematica, Cagliari-Sassari, Ed. Cremonese (1964).Google Scholar
  24. [24]
    Eringen A. C. and Suhubi E.S.: “Nonlinear theory of simple micro-elastic solids” I, Intern. Journ. Eng. Sci., 2, pp. 189–203 (1964).CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    Suhubi E.S. and Eringen A. C.: “Nonlinear theory of simple microelastic solids” II, Intern. J. Eng. Sci., 2, 389–404 (1964).CrossRefMathSciNetGoogle Scholar
  26. [26]
    Palmov V.A., Prikl. Mat. Mech., 28, 401 (1964).MathSciNetGoogle Scholar
  27. [27]
    Galletto D.: “Contributo allo studio dei sistemi continui a trasformazioni reversibili con caratteristiche di tensione asimmetriche” Rend. Sem. Matem. Univ. di Padova (1965).Google Scholar
  28. [28]
    Schaefer H.: Continui di Cosserat “Lezioni e Confe-renze dell’Università di Trieste” Istituto di Meccanica, fasc. 7 (1965).Google Scholar
  29. [29]
    Galletto D.: “Sistemi incomprimibili a trasformazio= ni reversibili nel caso asimmetrico” Rendic. Sem. Mat. Univ. Padova (1965–66).Google Scholar
  30. [30]
    Eringen A. C.: “Linear theory of micropolar elasticity” J. Math. Mech., 15, pp. 909–924 (1966).MATHMathSciNetGoogle Scholar
  31. [31]
    Galletto D.: “On continuous media with contact couples” Meccanica n. 3, vol. I (1966).Google Scholar
  32. [32]
    Sandru N.: “On some-problems of the linear theory of asymmetric elasticity” Int. J. Eng. Sci., 81–96 (1966).Google Scholar
  33. [33]
    Nowacki W.: “Couple stresses in the theory of thermoelasticity” Proc. of IUTAM Symposia, Springer Verlag, Vienna (1966).Google Scholar
  34. [34]
    Schaefer H.: “Das Cosserat Kontinuum” Zeitschrift f. angewandte Mathematik und Mechanik, B. 47, H. 8, pp. 485–498 (1967).CrossRefGoogle Scholar
  35. [35]
    Agostinelli C.: “Sulla possibilitâ di sforzi asimmetrici in un corpo elastico elettricamente conduttore in moto vibratorio sotto l’azione di un campo magnetico” Rend. Acc. Naz. Lincei, s. 8, vol. 43 e 44, fasc. 1 (1968).Google Scholar
  36. [36]
    Nowacki W.: “Propagation of rotation waves in asymmetric elasticity” Bull. de l’Acad. Polonaise d. Sciences, S6r. des sciences techniques, vol. XVI n. 10 (1968).Google Scholar
  37. [37]
    Nowacki W.: “Green functions for micropolar elasticity” ibidem n. 11–12 (1968).Google Scholar
  38. [38]
    Nowacki W. and Nowacki W.K.: “Generation of waves in an infinite micropolar elastic solid body” I and II, ibidem vol XVII n. 2 (1969).Google Scholar
  39. [39]
    Nowacki W. and Nowacki W.K.: “Waves in a micro-polar cylinder” I and II, ibidem vol. XVII n. 1, (1969).Google Scholar
  40. [40]
    Nowacki W. and Nowacki W.K.: “Propagation of monochromatic waves in an infinite micropolar elastic plate”, ibidem vol. XVIII, n. 1 (1969).Google Scholar
  41. [41]
    Nowacki W.: “On the completeness of potentials in micropolar elasticity” Archiwum Mechanicki Stosowanej, 2, 21 (1969).Google Scholar
  42. [42]
    Parfitt V. R. and Eringen A. C.: “Reflection of plane waves from the flat boundary of a micropolar elastic half-space” The Journ. of the Acoustic Society of America, vol. 45 n. 5 (1969).Google Scholar
  43. [43]
    Eringen A. C.: “Compatibility conditions of the theory of micromorphic elastic solids”Journ. of Math. and Mech., vol. 19, pp. 473–482 (1969).MATHGoogle Scholar
  44. [44]
    Grioli G.: “Energia libera e stato tensionale dei continui” Ann. Mat. pura ed applicata s. IV-T, LXXXVII (1970).Google Scholar
  45. [45]
    Grioli G.: “Microstrutture” I and II, Rend. Acc. Naz. Lincei, s. VIII, vol. XLIX (1970).Google Scholar
  46. [46]
    Eringen A. C.: “Mechanics of micropolar continua”, Pergamon Press (1970).Google Scholar
  47. [47]
    Kafadar C. B. and Eringen A. C.: “Micropolar media I The classical theory” Int. J. Engng. Sci., vol. 9, pp. 271–305 (1971).CrossRefMATHGoogle Scholar
  48. [48]
    Kafadar C. B. and Eringen A. C.: “Micropolar media II The relativistic theory” ibidem pp. 307–329 (1971).Google Scholar

Copyright information

© Springer-Verlag Wien 1974

Authors and Affiliations

  • G. Grioli

There are no affiliations available

Personalised recommendations