The Linear Theory of Micropolar Elasticity

  • W. Nowacki
Part of the International Centre for Mechanical Sciences book series (CISM, volume 151)


The classical theory of elasticity describes well the behaviour of construction materials (various sorts of steel, aluminium, concrete) provided the stresses do not exceed the elastic limit and no stress concentration occurs.


Linear Theory Couple Stress Stress Function Virtual Work Singular Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Voigt W.: “Theoretische Studien fiber die ElastizitRtverhaltnisse der Kristalle”, Abh. Ges. biss. Göttingen 34, (1887).Google Scholar
  2. [2]
    Cosserat E. and Cosserat F’.: “Théorie des corps déformables’;A.Herrman, Paris, (1909).Google Scholar
  3. [3]
    Truesdell C. and Toupin R.A.: “The classical field theories”, Encyclopaedia of Physics 3, N°1, Springer Verlag, Berlin, 1960.Google Scholar
  4. [4]
    Grioli G.: “Elasticité asymmetrique”, Ann. di Mat. Pura et Appl. Ser. IV, 50 (1960).Google Scholar
  5. [5]
    Mindlin R. D. and Tiersten H.F.: “Effects of couple stresses in linear elasticity”, Arch. Mech. Analysis, 11 (1962), 385.MathSciNetGoogle Scholar
  6. [6]
    Gunther W.: “Zur Statik und Kinematik des Cosseratschen Kontinuums”, Abh. Braunschweig, Wiss. Ges. 10 (1958), 85.Google Scholar
  7. [7]
    Schaefer H.: “Versuch einer ElastizitNtstheorie des zweidimensionalen Cosserat-Kontinuums, Misz. Angew. Mathematik Festschrift Tollmien, Berlin, (1962), Akademie Verlag.Google Scholar
  8. [8]
    Neuber H.: “On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat-continua”, Int. Congress IUTAM, Mtinchen, 1964.Google Scholar
  9. [9]
    Kuvshinskii E. V. and Aero P_. L.: “Continuum theory of asymmetric elasticity” (in Russian), Fizika Tvordogo Tela, 5 (1963).Google Scholar
  10. [10]
    F’almov N.A..: “Fundamental equations of the theory of asymmetric elasticity” (in Russian), Prikl. Mat. Mekh. 28 (1964), 401.Google Scholar
  11. [11]
    Eringen A. C. and. Suhubi E.S.: “Nonlinear theory of simple microelastic solids”, Int. J. of Engng. Sci. 1, 2, 2 (1964), 189CrossRefMATHMathSciNetGoogle Scholar
  12. Eringen A. C. and. Suhubi E.S.: “Nonlinear theory of simple microelastic solids”, Int. J. of Engng. Sci. II, 2, 4 (1964), 389.CrossRefMathSciNetGoogle Scholar
  13. [12]
    Stojanovic R.: “Mechanics of Polar Continua”, CISM, Udine (1970).Google Scholar
  14. [13]
    Nowacki W.: “Theory of micropolar elasticity”, J. Springer, Wien (1970).CrossRefGoogle Scholar
  15. [14]
    Nowacki W.: “Propagation of rotation waves in asymmetric elasticity”, Bull. Acad. Polon. Sci. Sér. Sci. Techn. 16, 10 (1968), 493.Google Scholar
  16. [15]
    Ignaczak J.: “Radiation conditions of Sommerfeld type for elastic materials with microstructure”, Bull. Acad. Polon. Sci. Sér. Sci. Techn. 17, 6 (1970), 251.MathSciNetGoogle Scholar
  17. [16]
    Nowacki W. and Nowacki W.K.: “The generation of waves in an infinite micropolar elastic solid”, Proc. Vibr. Probl. 10, 2 (1969), 170.Google Scholar
  18. [17]
    Nowacki W.: “On the completeness of potentials in micropolar elasticity”, Arch. Mech. Stos., 21, 2, (1969), 107.MATHMathSciNetGoogle Scholar
  19. [18]
    Galerkin B.:“Contributions â la solution générale du probleme de la théorie de l’élasticité dans le cas de trois dimensions”, C. R.. Acad. Sci. Paris, 190 (1970), 1047.Google Scholar
  20. [19]
    Iacovache M.: “O extindere a metodei lui Galerkin pentru sistemul ecuatiilor elasticitatii”, Bull. Stiint. Acad. Pep. Pop. Romane. Ser. A 1 (1949), 593.MathSciNetGoogle Scholar
  21. [20]
    Sandru N.: “On some problems of the linear theory of asymmetric elasticity”, Int. J. Eng. Sci. 4, 1, (1966), 81.CrossRefGoogle Scholar
  22. [21]
    Stefaniak J.: “Generalization of Galerkin’s functions for asymmetric thermoelasticity”, Bull. de l’Acad. Polon. Sci. Sér. Sci. Techn. 16, 8, (1968), 391.Google Scholar
  23. [22]
    Olesiak Z.: “Stress differential equations of the micro-polar elasticity”, Bull. Ac. Polon. Sci. Sér. Sci. Techn. 18, 5, (1970), 172.Google Scholar
  24. [23]
    Eringen A. C.: “Theory of micropolar elasticity”, Fracture, 2 (1968). Academic Press, New York.Google Scholar
  25. [24]
    Smith A. C.: “Waves in micropolar elastic solids”, Int. J. Engng. Sci. 10, 5 (1967), 741.CrossRefGoogle Scholar
  26. [25]
    Parfitt V.R. and Eringen A. C.: “Reflection of plane waves from the flat boundary of a micropolar elastic halfspace”, “Report N° 8–3, General Technology Corporation, (1966).Google Scholar
  27. [26]
    Stefaniak J.: “Reflection of a plane longitudinal wave from a free plane in a Cos serat medium”, Arch. Mech. Stos. 21, 6 (1969), 745.Google Scholar
  28. [27]
    Kaliski S., Kapelewski J. and Rymarz C.: “Surface waves on an optical branch in a continuum. with rotational degrees of freedom”, Proc. Vibr. Probl. 9, 2, (1968), 108.Google Scholar
  29. [28]
    Nowacki W. and Nowacki W. K.: “Propagation of monochromatic waves in an infinite micropolar elastic plate”, Bull. Acad. Polon. Sci., Sér. Sci. Techn. 17, 1 (1969), 29.Google Scholar
  30. [29]
    Nowacki W. and Nowacki W.K.: “The plane Lamb problem in a semi-infinite micropolar elastic body” Arch. Mech. Stos. 21, 3, (1969), 241.MATHMathSciNetGoogle Scholar
  31. [30]
    Eason G.: “Wave propagation in a material with microstructure”, Proc. Vibr. Probl. 12, 4, (1971), 363.MATHGoogle Scholar
  32. [31]
    Eason G.: “The displacement produced in a semi-in-finite linear Cosserat continuum by an impulsive force”, Proc. Vibr. Probl., 11, 2, (1970), 199.MATHGoogle Scholar
  33. [32]
    Achenbach J.P.: “Free vibrations of a layer of micro-polar continuum” Int. J. Engng. Sci. 10, 7 (1969), 1025.CrossRefGoogle Scholar
  34. [33]
    Nowacki W. and Nowacki W. K.: “Propagation of elastic waves in a micropolar cylinder”, Bull. Acad. Polon. Sci., Sér. Sci. Techn. I-17, 1 (1969), 49.Google Scholar
  35. [34]
    Nowacki W. and Nowacki W.K.: “The axially symmetric Lambs problem in a semi-infinite micro-polar elastic solid”, Proc. Vibr. Probl. 10, 2 (1969), 97.MATHMathSciNetGoogle Scholar
  36. [35]
    Iesan D.: “On the linear theory of micropolar elasticity”, Int. J. Eng. Sci. 7 (1969), 1213.Google Scholar
  37. [36]
    Graffi D.: “Sui teoremi di reciprocità nei fenomeni non stazionari”, Atti Accad. Sci. Bologna, 10, 2, (1963).MathSciNetGoogle Scholar
  38. [37]
    Schaefer H.: “Das Cosserat-Kontinuum”, ZAMM, 47, 8 (1967), 485.CrossRefMATHGoogle Scholar
  39. [38]
    Neuber H.: “Uber Probleme der Spannungskonzentration im Cosserat-Körper”, Acta Mechanika, 2, 1 (1966), 48.CrossRefMATHMathSciNetGoogle Scholar
  40. [39]
    Neuber H.: “Die schubbeanspruchte Kerbe im CosseratKdrper”, ZAMM, 47, 5, (1967), 313.CrossRefMATHGoogle Scholar
  41. [40]
    Neuber H.: “On the effects of stress concentration in Cosserat continua”, IUTAM-Symposium (1967), Freudenstadt-Stuttgart, Mechanics of generalized continua (1968), 109.Google Scholar
  42. [41]
    Cowin S. C.: “Stress functions for elasticity”, Int. J. Solids Structures, 6, (1970), 389.CrossRefMATHGoogle Scholar
  43. [42]
    Schaefer H.: “Die Spannungsfunktionen eines Kontinuum mit Momentenspannungen”, Bull. de l’Acad. Sci. Pol., Sér. Sci. Techn. I, 15, 1 (1967), 63; II, 15, 1, (1967), 485.Google Scholar
  44. [43]
    Mindlin R. D.: “Influence of couple-stresses on stress concentrations”, Exper. Mech. 3, 1, (1963), 1.MathSciNetGoogle Scholar
  45. [44]
    Savin G.N.: “Foundation of couple stresses in elasticity” (in Ukrainian), Kiev, (1965).Google Scholar
  46. [45]
    Savin G.N.: “Stress concentration in the neighbourhood of holes” (in Russian), Kiev (1966).Google Scholar
  47. [46]
    Savin C.N. and Nenuish J. N.: “Stress concentration in couple-stress elasticity” (in Russian), Prikl. Mech. 4, 12 (1968), 1.Google Scholar
  48. [47]
    Carlson D. E.: “Stress functions for plane problems with couple-stresses”, ZAMP, 17, 6, (1966), 789.ADSCrossRefMATHGoogle Scholar
  49. [48]
    Mindlin R. D.: “Representation of displacements and stresses in plane strain with couple-stresses”, IUTAM Symposium (1963), Tbilisi (1954), 256.Google Scholar
  50. [49]
    Muki R. and Sternberg E.: “The influence cf couple-stress concentrations in elastic solids”, ZAMP„ 16, 5, (1965), 611.ADSCrossRefMathSciNetGoogle Scholar
  51. [50]
    Kaloni P. N. and Ariman T.: “Stress concentration effects in micropolar elasticity”, ZAMP, 18, 1, (1967), 136.ADSCrossRefGoogle Scholar
  52. [51]
    Kessel S.: “Die Spannungsfunktionen des CosseratKontinuum”, ZAMM, 47, 5 (1967), 329.CrossRefMATHGoogle Scholar
  53. [52]
    Nowacki W.: “Plane problems of micropolar elasticity”, Buil.A..cad. Polon. Sci., Sér. Sci. Techn. 19, 6, (1971), 237.Google Scholar
  54. [53]
    Nowacki W.: “The ”second“ plane problem of micro-polar elasticity”, mull. Acad. Polon. Sci., Sér. Sci. Techn. 18, 11 (1970), 525.Google Scholar
  55. [54]
    Suchar M.: “Stress functions in the ”second“ plane problem of micropolar elasticity”, Bull. Acad. Polon. Sci. 20, (1972) (in print).Google Scholar
  56. [55]
    Nowacki W.: “Generalized Love’s functions in micro-polar elasticity”, Bull. Acad. Polon. Sci. Sér. Sci. Techn., 17, 4, (1969), 247.Google Scholar
  57. [56]
    Nowacki W.: “Axially symmetric problem in micro-polar elasticity”, Bull. Acad. Polon. Sci., Sér. Sci. Techn. 19, 7/8, (1971), 317.Google Scholar
  58. [57]
    Stefaniak J.: “Solving functions for axi-symmetric problems in the Cosserat medium”, Bull. de l’Acad. Polon. Sci., Sér. Sci. Techn. 18, 9, (1970), 387.Google Scholar
  59. [58]
    Hilavacek M.: “The first boundary-value problem of elasticity theory with couple stresses I. Cosserat Continuum”, Bull. Acad. Polon. Sci., Sér. Sci. Techn. 18, 2, (1970), 75.Google Scholar
  60. [59]
    Iesan D.: “Existence theorems in micropolar elastostatics”, Int. J. Eng. Sc. 9, (1971), 59.CrossRefMATHGoogle Scholar
  61. [60]
    Claus W. D. and Eringen A. C.: “Three dislocation concepts and microrrorphic mechanics. Developments in Mechanics” Vol. 6. Proceedings of the 12th Midwestern Mechanics Conference.Google Scholar
  62. [61]
    Minagawa S.: “On the force exerted upon continuously distributed dislocations in a Cosserat continuum”, Phys.Stat. Sol., 39 (1970), 217.Google Scholar
  63. [62]
    Kessel S.: “Lineare Elastizitâtstheorie der anisotropen Cosserat-Kontinuums”, Abh. der Braunsthw. Wiss. Gesellschaft 16, (1964), 1.MATHGoogle Scholar
  64. [63]
    Iesa.n D.: “Thermal stresses in the generalized plane strain of anisotropic elastic solids”, Bull. de l’Ac. Pol. Sc., Sér. Sci. Techn. 18, 6, (1970), 227.Google Scholar

Copyright information

© Springer-Verlag Wien 1974

Authors and Affiliations

  • W. Nowacki

There are no affiliations available

Personalised recommendations