# Some remarks on the separability of damped systems and non-self-adjoint eigenvalue problems

• Eberhard Brommundt
Part of the International Centre for Mechanical Sciences book series (CISM, volume 1)

## Abstract

We introduce
$$\left. {\begin{array}{*{20}{c}} {{u_1}\left( {\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{X} ,t} \right) = u\left( {\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{X} ,t} \right)} \\ {{u_2}\left( {\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{X} ,t} \right) = \dot u\left( {\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{X} ,t} \right)} \end{array}} \right\}\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{u} = \left( {\begin{array}{*{20}{c}} {{u_1}} \\ {{u_2}} \end{array}} \right)$$
(A)
into the equation (*) of section 10.1 and obtain
$$\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{L} \underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{u} = \underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{\mu } \dot u,$$
(B)
where
$$\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{L} = \left( {\begin{array}{*{20}{c}} 0&1 \\ { - L}&{ - b} \end{array}} \right),\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle\thicksim}}}{\mu } = \left( {\begin{array}{*{20}{c}} 1&0 \\ 0&\mu \end{array}} \right).$$

## Keywords

Boundary Condition Eigenvalue Problem Complex Conjugate Dimensional Case Order System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.