Advertisement

The Restricted Problem

  • Victor Szebehely
Part of the International Centre for Mechanical Sciences book series (CISM, volume 170)

Abstract

In the restricted circular planar problem of three bodies, two bodies (assumed to be point masses and calles primaries) revolve around their center of mass in circular orbits under the influence of their mutual gravitational attraction. A third body (attracted by the previous two but not influencing their motion) moves in the plane defined by the two revolving bodies. The problem is to determine the motion of this third body, (Szebehely, 1967).

Keywords

Periodic Orbit Zero Velocity Restrict Problem Jacobian Constant Lagrangean Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for the Restricted Problem

  1. Birkhoff, G.D.,“The restricted problem of three bodies”, Rendiconti de Circolo Matematico di Palermo, Vol. 39, pp. 1–70, (1915).CrossRefGoogle Scholar
  2. Birkhoff, G.D.,“Sur le problème restreint des trois corps”, Two memoirs, both published in Annali della R. Scuola Normale Superiore di Pisa. The first in series 2, Vol. 4, pp. 267–306 (1935); the second in series 2, Vol. 5, pp. 1–42 (1936).Google Scholar
  3. Birkhoff, G.D.,“Dynamical systems with two degrees of freedom”, Trans. Am. Math. Soc., Vol. 18, pp. 199–300 (1919).CrossRefMathSciNetGoogle Scholar
  4. Brouwer, D. and G. Clemence, “Methods of Celestial Mechanics”, Academic Press, 1961.Google Scholar
  5. Charlier, C.L, C.L.,“Die Mechanik des Himmels”, Leipzig, von Veit & Co., First Vol. 1902, Second Vol. 1907.Google Scholar
  6. Darwin, G.H.,“Periodic Orbits”, Acta Math., Vol. 21, pp. 99–242, (1897).CrossRefMATHMathSciNetGoogle Scholar
  7. Goldstein, H, H.,“Classical Mechanics”, Addison-Wesley, (1951).Google Scholar
  8. Hill, G.W.,“Researches in the lunar theory”, Am. J. of Math., Vol. 1, pp. 5–26, 129–147, 245–260 (1878).Google Scholar
  9. Klose, A.,“Topologische Dynamik der interplanetaren Massen”, Vieteljahrsschrift des Astronomischen Gesellschaft, Vol. 67, pp. 61–102, (1932).Google Scholar
  10. Levi-Civita, T., Acta Math., Vol. 42, pp. 99–144 (1919).CrossRefMATHMathSciNetGoogle Scholar
  11. Levi-Civita, T.,“Sur la résolution qualitative du problème restreint de trois corps”, Acta Mathematica, Vol. 30, pp. 305–327. (1906).CrossRefMATHMathSciNetGoogle Scholar
  12. Levi-Civita, T.,“Traiettorie singolari ed urti nel problema ri-stretto dei tre corpi”, Annali di Matematica, Ser. 3, Vol. 9, pp. 1–32, (1904).CrossRefGoogle Scholar
  13. Levi-Civita, T., Ann. di Mat., Ser. 3, Vol. 5, pp. 221–309, (1901).MATHGoogle Scholar
  14. Moulton, F.R., Proc. Math Congr., Cambridge, England, Vol. 2, pp. 182–187 (1913); also, Periodic Orbits, Carnegie Inst., Wash. (1920).Google Scholar
  15. Poincaré, H.,“Les méthodes nouvelles de la mécanique céleste”, Paris, 1892, 1893, 1899.ADSGoogle Scholar
  16. Strömgren, E.,“Connaissance actuelle des orbites dans le problè me des trois corps”, Bull. Astr. (2), Vol. 9, pp. 87–130 (1935), and Publ. Kbh. Obs. # 100, pp. 1–44 (1935).Google Scholar
  17. Szebehely, V, V.“Theory of orbits”, Academic Press, New York, (1967).Google Scholar
  18. Whittaker E.T., “Analytical dynamics”, 4th Edition, Dover, (1944).Google Scholar
  19. Wintner, A., “The analytical foundations of celestial mechanics”, Princeton Univ. (1947).Google Scholar

Copyright information

© Springer-Verlag Wien 1974

Authors and Affiliations

  • Victor Szebehely
    • 1
  1. 1.University of TexasAustinUSA

Personalised recommendations