Advertisement

Generalized Yield Criteria for Advanced Models of Material Response

  • W. Olszak
Part of the International Centre for Mechanical Sciences book series (CISM, volume 241)

Summary

When formulating the yield criterion, we as a rule, adopt the well known classical approach which refers to homogeneous and isotropic bodies. The physical reality is, however, more complex and has to be accounted for: more general and realistic models have to be analysed. Thus we successively take into consideration new mechanical phenomena which originally were disregarded:
  • the anisotropic and nonhomogeneous material structure;

  • the rheological material response in both its aspects, i.e. when it occurs after having exceeded the plastic limit or else when it accompanies the deformation process from its very beginning;

  • the next step consists in investigating the consequences of a nonstationary character of the yield criterion which may be induced, e.g., by artificial irradiation processes of solids or may occur in elasto-visco-plastic soils with time-variable humidity;

  • finally, in a rather general approach, the original states of strain and stress are supposed to be nonuniform (nonhomogeneous) in space and time.

Keywords

Yield Condition Yield Surface Yield Criterion Material Response Plastic Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Beltrami, Sulle condizioni di resistenza dei corpi elastici. Rend. Ist. Lomb., Ser. 2, vol. 18, 1885, p. 704.Google Scholar
  2. [2]
    B.A. Boley and J.E. Wiener, Theory of Thermal Stresses. Wiley Sons Inc., New York-London, 1960.MATHGoogle Scholar
  3. [3]
    W. Burzyritoki: Studium nad hipotezami wytgzenia (in Polish). Lww 1928.Google Scholar
  4. W. Burzyritoki: Uber Anstrengungshypothesen. Schweizerische Bauzeitung, vol. 94, 1929, p. 259.Google Scholar
  5. [4]
    F. Campus: Plastification de l’acier doux en flexion plane simple. Bull. de la Classe des Sciences, Série 5, vol. 49, 4, 1963.Google Scholar
  6. F. Campus: Plastification de l’acier doux en flexion composée. Bull de la Classe des Sciences, Sér. 5, vol. 49, 4, 1963.Google Scholar
  7. F. Campus: La plastification de l’acier doux en flexion simple et composée et ses effets sur le flambage par compression des pièces droites élastoplastiques. Bull. de la Classe des Sciences, Série 5, vol. 49, 5, 1963.Google Scholar
  8. [5]
    F. Campus et K. Gamski, Abaissement de la limite apparente d’élasticité des acier par fluage après une amorce d’écruissage à température ordinaire. C. R. Ac. Sci de Paris, 1955.Google Scholar
  9. [6]
    Ch. A. Coulomb, Essai sur une application de règle de Maximis et Minirnis à quelques problèmes statiques relatifs à l’architecture. Mém. de math. et phys., vol. 7, 1773, p. 343.Google Scholar
  10. [7]
    N.M. Dehousse, Note relative à un phénomène de surélasticité en flexion constatée lors d’un essais de barreau en acier doux. Bull. de la Classe des Sciences, Série 5, vol. 48, 1962.Google Scholar
  11. [8]
    Galileo Galilei, Discorsi e dimostrazioni matematiche. Leyde 1638.Google Scholar
  12. [9]
    H. Hencky, Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nebenspannungen. Proc. 1st Internat. Congr. Appl. Mech., Delft, 1924, p. 312–317. Cf. also Zeitschr. ftir Angewandte Mathematik und Mechanik, vol. 4, 1924, p. 323–334.Google Scholar
  13. [10]
    R. Hill: Mathematical Theory of Plasticity. Oxford University Press, 1950.Google Scholar
  14. R. Hill: A note on estimating the yield point loads in a plastic-rigid body. Phil. Mag., vol. 43, 1952, p. 353–355.MATHGoogle Scholar
  15. [11]
    K. Hohenemser and W. Prager, Uber die Ansätze der Mechanik isotroper Kontinua. Zeitschr. ftir Angewandte Mathematik und Mechanik, vol. 12, 1932, p. 216.CrossRefGoogle Scholar
  16. [12]
    M.T. Huber, Wiasciwapracaodksztalcenia jako miara wytgzenia materialu (in Polish).Czasopismo Techniczne, Lwow, vol. 22, 1904, p. 81. Reprinted in Pisma, vol. 2, Panstwowe Wydawnictwo Naukowe ( PWN ), Warsaw 1956.Google Scholar
  17. [13]
    J.A. König and W. Olszak, The yield criterion in the general case of nonhomogeneous (nonuniform) stress and deformation fields. Proc. Symp. “Topics in Applied Continuum Mechanics”, (Ed. J. L. Zeman and F. Ziegler ), Springer-Verlag, Wien-New York 1974.Google Scholar
  18. [14]
    C. Maiden and J.D. Campbell, The static and dynamic strength of a carbon steel at low temperatures. Phil. Mag., vol. 3, 1958, p. 872.CrossRefGoogle Scholar
  19. [15]
    F.Mariotte, Traité du mouvement des eaux et des autres fluides. Paris 1686Google Scholar
  20. [16]
    R. von Mises: Mechanik der festen Körper im plastisch deformablen Zustand. Göttinger Nachrichten, Math. phys. Klasse, 1913, p. 582–592.Google Scholar
  21. R. von Mises: Mechanik der plastischen Formanderung von Kristallen. Zeitschr. ftir Angewandte Mathematik und Mechanik, vol. 8, 1928, p. 161–185.CrossRefGoogle Scholar
  22. [17]
    Z.Mrz: On the description of anisotropic work-hardening, J. Mech. Phys. Solids, vol. 15, 1967, p. 163–175.Google Scholar
  23. Z.Mrz: An attempt to describe the behaviour of metals under cyclic loads using a more general work-hardening model. Acta Mechanics, ovl. 7, 1969, p. 199–212.Google Scholar
  24. Z.Mrz: A description of work-hardening of metals with application to variable loading. Proc. Intern.Symp. “Foundations of Plasticity”, (Ed. A.Sawczuk ), Noordhoff Intern. Publ., Groningen 1973.Google Scholar
  25. [18]
    W. Olszak: O podstawach teorii ciul elasto-plastycznych niejednorodnych (in Polish). Arch. Mech. Stos., 3, 4, 1955.Google Scholar
  26. W. Olszak: La nonhomogénéité plastique en tant que phenomène physique et problème scientifique. Prof. F. Campus Anniv. Volume, Brussels 1964.Google Scholar
  27. W. Olszak: Les critères de transition en elastovisco-plasticité. Bull.Acad. Pol. Sci., Série Sci. Techn., 1, 1966.Google Scholar
  28. W. Olszak: Les critères de plasticité non-classiques. Considération de base. In “Topics of Contemporary Mechanics”, CISM Courses and Lectures N° 210, Udine 1974, p. 185–189.Google Scholar
  29. [19]
    W. Olszak and P. Perzyna: On elastic/viscoplastic soils. In “Rheology and Soil Mechanics”, Proc. of the IUTAM Symp. Grenoble 1964, Springer 1966, p. 47–57.Google Scholar
  30. W. Olszak and P. Perzyna: The constitutive equations of the flow theory for a non-stationary yield condition. In “Applied Mechanics”, Proc. of the Eleventh Congr. of Appl. Mech., Munich 1964, (Ed. H. Görtler ), Springer 1966, p. 545–553.Google Scholar
  31. W. Olszak and P. Perzyna: Sur la théorie des phénomènes visco-plastiques. Rendic. Se-min. Matern. e Fis., vol. 38, 2, 1968 (Milan).Google Scholar
  32. W. Olszak and P. Perzyna: Stationary and nonstationary viscoplasticity. Symp. on Inelastic Behaviour of Solids, Columbus, Ohio, 1970.Google Scholar
  33. [20]
    W. Olszak, J. Rychlewski and W. Urbanowski, Plasticity under nonhomogeneous conditions. Advances in Applied Mechanics, vol. 7, Acad. Press, Nev, York-London 1962, p. 131–214.Google Scholar
  34. [21]
    W. Olszak and W. Urbanowski: The generalized distortion energy in the theory of anisotropic bodies. Bull. Acad. Pol. Sci., Sér. Sci. Techn., 5, 1957, p. 29–37.MATHGoogle Scholar
  35. W. Olszak and W. Urbanowski: The tensor of moduli of plasticity. Bull. Acad. Pol. Sci., Sér. Sci. Techn., 5, 1957, p. 39–45.MATHGoogle Scholar
  36. W. Olszak and W. Urbanowski: The flow function and the yield condition for nonhomogeneous orthotropic bodies. Bull. Acad. Pol. Sci., Sér. Sci. Techn., 4, 1957.Google Scholar
  37. [22]
    P. Perzyna: The constitutive equations for rate-sensitive plastic materials. Quart.Appl. Math., 20, 1963, p. 321.MATHMathSciNetGoogle Scholar
  38. P. Perzyna: The constitutive equations for work-hardening and rate-sensitive plastic materials. Proc. Vibr. Probl., 4, 1963, p. 281.MathSciNetGoogle Scholar
  39. [23]
    P. Perzyna and T. Wierzbicki: Temperature dependent and strain rate-sensitive plastic materials. Arch. Mech. Stos., 16, p. 135.Google Scholar
  40. P. Perzyna and T. Wierzbicki: Fundamental problems in viscoplasticity. Advances in Applied Mechanics, vol. 9, Academic Press, New York-London 1966.Google Scholar
  41. [24]
    A. Phillips and H. Moon, An experimental investigation concerning yield surfaces and loading surfaces. Rep. Yale University, Dept. of Engineering and Applied Science, 1976. Cf. Acta Mechanica.Google Scholar
  42. [25]
    A. Phillips and M. Ricciutti, Fundamental experiments in plasticity and creep of aluminum. Extension of previous results. Int. J. of Solids Structures, vol. 12, 1976, p. 159–171.CrossRefGoogle Scholar
  43. [26]
    W. Prager: Mécanique des solides isotropes au delà du domaine élastique. Mém. des Sci. Math., vol. 87, Gauthier-Villars, Paris 1937.Google Scholar
  44. W. Prager: No isothermal plastic deformation. Proc. Koninkl. Akad. Wet. (B) 61, 1958, p. 176–182 (Amsterdam).Google Scholar
  45. [27]
    W. Prager and P.G. Hodge, Theory of Perfectly Plastic Solids. John Wiley Sons Inc., New York 1951.MATHGoogle Scholar
  46. [28]
    L. Prandtl: Uber die Eindringungsfestigkeit (Harte) plastischer Baustoffe und die Festigkeit von Schneiden. Zeitschr. für Angewandte Mathem. und Mechanik, vol. 1, 1921, p. 15–21.CrossRefMATHGoogle Scholar
  47. L. Prandtl: Spannungsverteilung in plastische Körpern. Proc. 1st Internat. Congr. Appl. Mech., Delft, 1924, p. 43–54.Google Scholar
  48. L. Prandtl: Ein Gedankenmodell zur kinetischen Theorie fester Körper. Zeitschr. für Angewandte Mathem. und Mechanik, vol. 8, 1928, p. 85–106.CrossRefMATHGoogle Scholar
  49. L. Prandtl: reprinted in “Gesammelte Abhandlungen zur angewandten Mechanik, Hydro-und Aerodynamik”, 1. Teil (Ed. H. Görtler, H. Schlichting, W. Tollmien, F. W. Riegels), Springer-Verlag, Berlin-Göttingen-Heidelberg 1’Google Scholar
  50. [29]
    M. Reiner and K. Weissenberg, Rheology Leaflet, N° 10, 1939, p. 12–20.Google Scholar
  51. [30]
    E. Reuss, Berücksichtigung der elastischer Formânderungen in der Plasti. tätstheorie. Zeitschr. für Angewandte Mathematik und Mechanik, vol. 10, 1930, p. 266–274.CrossRefMATHGoogle Scholar
  52. [31]
    B. de Saint-Venant, Mémoire sur l’établissement des equations différentiel des mouvements intérieurs opérés dans les corps solides ductiles au délà des limites où l’élasticité pourrait les ramener à leur premier état. C. R. Acad. Sci., 70, 1870, p. 473–480 (Paris).Google Scholar
  53. [32]
    W. W. Sokolowskij, Rasprastranieme uprugo-viazko-plasticheskikh volu vstierzhniakh (in Russian). Dokl. AN SSSR, 60, 5, 1948, p. 775–778.Google Scholar
  54. [33]
    H. Tresca, Mémoire sur l’écoulement des corps solides. Mém. prés. par div. say., vol. 18, 1868, p. 733–799.Google Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • W. Olszak
    • 1
  1. 1.International Centre for Mechanical SciencesPolish Academy of SciencesUdinePolish

Personalised recommendations