Advertisement

The Foundations of Plasticity

Experiments. Theory and Selected Applications
  • A. Phillips
Part of the International Centre for Mechanical Sciences book series (CISM, volume 241)

Abstract

The traditional method of experimental verification of an inelastic theory of metal deformation is the empirical one. In an empirical verification we compare the experimentally obtained stress-strain curve for a given stress path or strain path with the stress-strain curve predicted by the theory. Such an experimental verification requires a large number of experiments since each experiment verifies the validity of the theory for the particular path used. No conclusions can be drawn on whether the theory is correct for a different path, and consequenly the empirical method is of limited validity. The limitations of the empirical method are even more apparent if the theory includes a number of arbitrary constants and/or functions which can be selected in such a manner that the theory agrees with the experiment for the given path. This is not a verification, it is only a method of selecting the values of the constants or functions in a way that an apparent agreement between theory and experiment will occur.

Keywords

Plastic Strain Yield Surface Creep Strain Stress Path Stress Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Morrison, J.L.M. and W.M. Shepherd: Proceedings of the Institution of Mechanical Engineers, 163, p. 1 (1950).CrossRefGoogle Scholar
  2. [2]
    Baushinger, J: Mitteilungen aus dem mechanischentechnischen Laboratorium der k. polytechnischen Schule, München, Hefte 7–14 (1877–1886); Heft 13, pp. 1–115 (1886).Google Scholar
  3. [3]
    Phillips, A. and M. Ricciuti: Int. J. Solids Structures, 12, 159–171 (1976).CrossRefGoogle Scholar
  4. [4]
    Taylor, G. I. and H. Quinney: Phil. Trans. Roy. Soc. London Ser. A 230, 323–362, (1931).CrossRefMATHGoogle Scholar
  5. [5]
    Lode, W.: Z. Physik 36, 913–939, (1926).CrossRefGoogle Scholar
  6. [6]
    Lubahn, J.D.: Journal of Metals, pp. 1031, (1955)Google Scholar
  7. [7]
    Valanis, K.C.: Archives of Mechanics, 23, 517–551, (1971).MATHMathSciNetGoogle Scholar
  8. [8]
    Fox, N.: Acta Mechanica 7, 248–252 (1969).CrossRefMATHGoogle Scholar
  9. [9]
    Phillips, A.: International Symposium on Foundations of Plasticity. Vol. II, Problems of Plasticity pp. 193–233 (1974). Noordhoff.Google Scholar
  10. [10]
    Phillips, A., Liu, C.S. and Justusson, J.W.: Acta Mechanica, 14, 119–146 (1972).Google Scholar
  11. [11]
    Phillips, A., Tang, J.L. and Ricciuti, M.: Acta Mechanica 20, 23–40 (1974).Google Scholar
  12. [12]
    Phillips, A. and Kasper, R.: Journal of Applied Mechanics 40, pp. 891–896 (1973).CrossRefGoogle Scholar
  13. [13]
    Phillips, A. and Das, P.: to be published.Google Scholar
  14. [14]
    Williams, J.F. and Svensson, N.L.: Journal of Strain Analysis, 5, 128–139 (1970).CrossRefGoogle Scholar
  15. [15]
    Guest, J.J.: Phil. Mag. 50, 69–132 (1900).CrossRefMATHGoogle Scholar
  16. [16]
    Bridgman, P.W.: Collected Experimental Papers (1964). 17Google Scholar
  17. [17]
    Crossland, B.: Proc. Inst. Mech. Engr. 169, 935–944 (1954).CrossRefGoogle Scholar
  18. [18]
    Phillips, A., and Tang, J.L.: Intern Journal Solids and Structures 8, 463–474 (1972).Google Scholar
  19. [19]
    Naghdi, P.M., F. Essenburg, W. Koff: J. Appl. Mech. 25, 201–209 (1958).Google Scholar
  20. [20]
    Ivey, H.J.: J. Mech. Eng. Sciences 3, 15–37 (1961).CrossRefGoogle Scholar
  21. [21]
    Morrison, J.L.M.: Proc. Instn. Mech. Engrs. 142, 193–223 (1940).Google Scholar
  22. [22]
    Williams, J.F. and Svensson, N.L.: Journal Strain Analysis 5, 263–272 (1971).CrossRefGoogle Scholar
  23. [23]
    Miastkowski, J. and Szczepinski, W.: Int. Journal Solids Structures 1, 189–194 (1965).Google Scholar
  24. [24]
    Mair, W.M. and Pugh, H. L.D.: Journ. Mech. Eng. Sci. 6, 150–163 (1964).Google Scholar
  25. [25]
    Phillips, A. and Gray G.: Journal of Basic Eng. 83, 275–289 (1961).CrossRefGoogle Scholar
  26. [26]
    Phillips, A.: Proc. 2nd Symp. Naval Struct. Mech. 202–214 (1960).Google Scholar
  27. [27]
    Sewell, M.J.: J. Mech. and Phys. of Solids, 21, 19–45 (1973).CrossRefMATHGoogle Scholar
  28. [28]
    Dietrich, L., Kawahara, W., and A. Phillips, Acta Mechanica. 29, 257–267 (1978).CrossRefGoogle Scholar
  29. [29]
    Phillips, A.: AIAA Journal 10, 951–953 (1972).CrossRefGoogle Scholar
  30. [30]
    Melan, E.: Ing. Archiv, 116–126 (1938).Google Scholar
  31. [31]
    Ishlinskii, Yu.: Ukz. Math. Jour. 6, (1954).Google Scholar
  32. [32]
    Prager, W.: Journ. Appl. Mech. 23, 493, (1956).MATHMathSciNetGoogle Scholar
  33. [33]
    Kadashevitch, I. and Novoshilov, V.V.: Prikl. Math. un Mekch. 22, 104 (1959).Google Scholar
  34. [34]
    Shield, R.T. and Ziegler, H.: ZAMP, 9a, 260 (1958).CrossRefMathSciNetGoogle Scholar
  35. [35]
    Ziegler, H.: Quart. AppL Math. 17, 55–60 (1959).MATHMathSciNetGoogle Scholar
  36. [36]
    Baltov, A. and Sawczuk, A.: Acta Mechanica 1, 81–92 (1965).CrossRefGoogle Scholar
  37. [37]
    Phillips, A. and Weng, G.: J. Appl. Mechanics 42, 375–378, 1975.CrossRefGoogle Scholar
  38. [38]
    Eisenberg, M.A. and A. Phillips: Acta Mechanica 11, 247–260, (1971).CrossRefMATHGoogle Scholar
  39. [39]
    Greenstreet, W.L. and A. Phillips: Acta Mechanica 16, 143–156, (1973).CrossRefGoogle Scholar
  40. [40]
    Phillips, A.: Nuclear Engineering and Design 18, 203–211, (1972).CrossRefGoogle Scholar
  41. [41]
    Eisenberg, M.A. and A. Phillips: Acta Mechanica 5. 1–13, (1968).CrossRefMATHGoogle Scholar
  42. [42]
    Phillips, A. and M. Eisenberg: Int. Journal Nonlinear Mechanics, 1, 247–256 (1966).CrossRefGoogle Scholar
  43. [43]
    Phillips, A. and H.C. Wu: Int. Journal Solids and Structures 9, 15–30 (1973).CrossRefMATHGoogle Scholar
  44. [44]
    Phillips, A. and H.C. Wu: Acta Mechanica 17, 121–136 (1973).CrossRefMATHGoogle Scholar
  45. [45]
    Nicholson, D.W. and A. Phillips: Int. Journal Solids and Structures 10, 149–160 (1974).CrossRefMATHGoogle Scholar
  46. [46]
    Wood, E.R. and A. Phillips: J. Mech. and Physics of Solids 15, 241–254, (1967).CrossRefGoogle Scholar
  47. [47]
    Phillips, A., Wood, E.R., Zabinski, M.P. and Zannis, P.: Int. J. Nonlinear Mechanics 8, 1–16 (1973).CrossRefMATHGoogle Scholar
  48. [48]
    Phillips, A. and Zabinski, M.P.: Ing. Archiv. 41, 367–376 (1972).CrossRefMATHGoogle Scholar
  49. [49]
    Phillips, A. and Zannis, P.: Int. J. Nonlinear Mechanics 8, 89–108 (1973).CrossRefGoogle Scholar
  50. [50]
    Phillips, A. and H. Moon: Acta Mechanica 27, 91–102 (1977).CrossRefGoogle Scholar
  51. [51]
    Phillips, A. and C.W. Lee: Int. J. Solids Structures (in press) 1979.Google Scholar
  52. [52]
    Phillips, A.: Topics in Applied Continuum Mechanics. (Z.L. Zeman and F. Ziegler, Editors), pp. 1–21, Springer Wien, 1974.Google Scholar
  53. [53]
    Eisenberg, M.A., Lee, C.W., and A. Phillips: Int. J. Solids Structures, 13, 1239–1255 (1977).CrossRefGoogle Scholar
  54. [54]
    Weng, G.J. and A. Phillips: Int. J. Engng. Sci. 15, 45–60 (1977).CrossRefMATHGoogle Scholar
  55. [55]
    Weng, G.J. and A. Phillips: Int. J. Engng. Sci. 15, 61–70 (1977).CrossRefMATHGoogle Scholar
  56. [56]
    Weng, G.J. and A. Phillips: Int. J. Solids Structures 14, 535–544 (1978).CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • A. Phillips
    • 1
  1. 1.Yale UniversityNew HavenUSA

Personalised recommendations