Skip to main content

The Foundations of Plasticity

Experiments. Theory and Selected Applications

  • Chapter
Plasticity in Structural Engineering, Fundamentals and Applications

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 241))

Abstract

The traditional method of experimental verification of an inelastic theory of metal deformation is the empirical one. In an empirical verification we compare the experimentally obtained stress-strain curve for a given stress path or strain path with the stress-strain curve predicted by the theory. Such an experimental verification requires a large number of experiments since each experiment verifies the validity of the theory for the particular path used. No conclusions can be drawn on whether the theory is correct for a different path, and consequenly the empirical method is of limited validity. The limitations of the empirical method are even more apparent if the theory includes a number of arbitrary constants and/or functions which can be selected in such a manner that the theory agrees with the experiment for the given path. This is not a verification, it is only a method of selecting the values of the constants or functions in a way that an apparent agreement between theory and experiment will occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Morrison, J.L.M. and W.M. Shepherd: Proceedings of the Institution of Mechanical Engineers, 163, p. 1 (1950).

    Article  Google Scholar 

  2. Baushinger, J: Mitteilungen aus dem mechanischentechnischen Laboratorium der k. polytechnischen Schule, München, Hefte 7–14 (1877–1886); Heft 13, pp. 1–115 (1886).

    Google Scholar 

  3. Phillips, A. and M. Ricciuti: Int. J. Solids Structures, 12, 159–171 (1976).

    Article  Google Scholar 

  4. Taylor, G. I. and H. Quinney: Phil. Trans. Roy. Soc. London Ser. A 230, 323–362, (1931).

    Article  MATH  Google Scholar 

  5. Lode, W.: Z. Physik 36, 913–939, (1926).

    Article  Google Scholar 

  6. Lubahn, J.D.: Journal of Metals, pp. 1031, (1955)

    Google Scholar 

  7. Valanis, K.C.: Archives of Mechanics, 23, 517–551, (1971).

    MATH  MathSciNet  Google Scholar 

  8. Fox, N.: Acta Mechanica 7, 248–252 (1969).

    Article  MATH  Google Scholar 

  9. Phillips, A.: International Symposium on Foundations of Plasticity. Vol. II, Problems of Plasticity pp. 193–233 (1974). Noordhoff.

    Google Scholar 

  10. Phillips, A., Liu, C.S. and Justusson, J.W.: Acta Mechanica, 14, 119–146 (1972).

    Google Scholar 

  11. Phillips, A., Tang, J.L. and Ricciuti, M.: Acta Mechanica 20, 23–40 (1974).

    Google Scholar 

  12. Phillips, A. and Kasper, R.: Journal of Applied Mechanics 40, pp. 891–896 (1973).

    Article  Google Scholar 

  13. Phillips, A. and Das, P.: to be published.

    Google Scholar 

  14. Williams, J.F. and Svensson, N.L.: Journal of Strain Analysis, 5, 128–139 (1970).

    Article  Google Scholar 

  15. Guest, J.J.: Phil. Mag. 50, 69–132 (1900).

    Article  MATH  Google Scholar 

  16. Bridgman, P.W.: Collected Experimental Papers (1964). 17

    Google Scholar 

  17. Crossland, B.: Proc. Inst. Mech. Engr. 169, 935–944 (1954).

    Article  Google Scholar 

  18. Phillips, A., and Tang, J.L.: Intern Journal Solids and Structures 8, 463–474 (1972).

    Google Scholar 

  19. Naghdi, P.M., F. Essenburg, W. Koff: J. Appl. Mech. 25, 201–209 (1958).

    Google Scholar 

  20. Ivey, H.J.: J. Mech. Eng. Sciences 3, 15–37 (1961).

    Article  Google Scholar 

  21. Morrison, J.L.M.: Proc. Instn. Mech. Engrs. 142, 193–223 (1940).

    Google Scholar 

  22. Williams, J.F. and Svensson, N.L.: Journal Strain Analysis 5, 263–272 (1971).

    Article  Google Scholar 

  23. Miastkowski, J. and Szczepinski, W.: Int. Journal Solids Structures 1, 189–194 (1965).

    Google Scholar 

  24. Mair, W.M. and Pugh, H. L.D.: Journ. Mech. Eng. Sci. 6, 150–163 (1964).

    Google Scholar 

  25. Phillips, A. and Gray G.: Journal of Basic Eng. 83, 275–289 (1961).

    Article  Google Scholar 

  26. Phillips, A.: Proc. 2nd Symp. Naval Struct. Mech. 202–214 (1960).

    Google Scholar 

  27. Sewell, M.J.: J. Mech. and Phys. of Solids, 21, 19–45 (1973).

    Article  MATH  Google Scholar 

  28. Dietrich, L., Kawahara, W., and A. Phillips, Acta Mechanica. 29, 257–267 (1978).

    Article  Google Scholar 

  29. Phillips, A.: AIAA Journal 10, 951–953 (1972).

    Article  Google Scholar 

  30. Melan, E.: Ing. Archiv, 116–126 (1938).

    Google Scholar 

  31. Ishlinskii, Yu.: Ukz. Math. Jour. 6, (1954).

    Google Scholar 

  32. Prager, W.: Journ. Appl. Mech. 23, 493, (1956).

    MATH  MathSciNet  Google Scholar 

  33. Kadashevitch, I. and Novoshilov, V.V.: Prikl. Math. un Mekch. 22, 104 (1959).

    Google Scholar 

  34. Shield, R.T. and Ziegler, H.: ZAMP, 9a, 260 (1958).

    Article  MathSciNet  Google Scholar 

  35. Ziegler, H.: Quart. AppL Math. 17, 55–60 (1959).

    MATH  MathSciNet  Google Scholar 

  36. Baltov, A. and Sawczuk, A.: Acta Mechanica 1, 81–92 (1965).

    Article  Google Scholar 

  37. Phillips, A. and Weng, G.: J. Appl. Mechanics 42, 375–378, 1975.

    Article  Google Scholar 

  38. Eisenberg, M.A. and A. Phillips: Acta Mechanica 11, 247–260, (1971).

    Article  MATH  Google Scholar 

  39. Greenstreet, W.L. and A. Phillips: Acta Mechanica 16, 143–156, (1973).

    Article  Google Scholar 

  40. Phillips, A.: Nuclear Engineering and Design 18, 203–211, (1972).

    Article  Google Scholar 

  41. Eisenberg, M.A. and A. Phillips: Acta Mechanica 5. 1–13, (1968).

    Article  MATH  Google Scholar 

  42. Phillips, A. and M. Eisenberg: Int. Journal Nonlinear Mechanics, 1, 247–256 (1966).

    Article  Google Scholar 

  43. Phillips, A. and H.C. Wu: Int. Journal Solids and Structures 9, 15–30 (1973).

    Article  MATH  Google Scholar 

  44. Phillips, A. and H.C. Wu: Acta Mechanica 17, 121–136 (1973).

    Article  MATH  Google Scholar 

  45. Nicholson, D.W. and A. Phillips: Int. Journal Solids and Structures 10, 149–160 (1974).

    Article  MATH  Google Scholar 

  46. Wood, E.R. and A. Phillips: J. Mech. and Physics of Solids 15, 241–254, (1967).

    Article  Google Scholar 

  47. Phillips, A., Wood, E.R., Zabinski, M.P. and Zannis, P.: Int. J. Nonlinear Mechanics 8, 1–16 (1973).

    Article  MATH  Google Scholar 

  48. Phillips, A. and Zabinski, M.P.: Ing. Archiv. 41, 367–376 (1972).

    Article  MATH  Google Scholar 

  49. Phillips, A. and Zannis, P.: Int. J. Nonlinear Mechanics 8, 89–108 (1973).

    Article  Google Scholar 

  50. Phillips, A. and H. Moon: Acta Mechanica 27, 91–102 (1977).

    Article  Google Scholar 

  51. Phillips, A. and C.W. Lee: Int. J. Solids Structures (in press) 1979.

    Google Scholar 

  52. Phillips, A.: Topics in Applied Continuum Mechanics. (Z.L. Zeman and F. Ziegler, Editors), pp. 1–21, Springer Wien, 1974.

    Google Scholar 

  53. Eisenberg, M.A., Lee, C.W., and A. Phillips: Int. J. Solids Structures, 13, 1239–1255 (1977).

    Article  Google Scholar 

  54. Weng, G.J. and A. Phillips: Int. J. Engng. Sci. 15, 45–60 (1977).

    Article  MATH  Google Scholar 

  55. Weng, G.J. and A. Phillips: Int. J. Engng. Sci. 15, 61–70 (1977).

    Article  MATH  Google Scholar 

  56. Weng, G.J. and A. Phillips: Int. J. Solids Structures 14, 535–544 (1978).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Wien

About this chapter

Cite this chapter

Phillips, A. (1979). The Foundations of Plasticity. In: Plasticity in Structural Engineering, Fundamentals and Applications. International Centre for Mechanical Sciences, vol 241. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2902-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2902-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81350-8

  • Online ISBN: 978-3-7091-2902-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics