Advertisement

Theory of Plasticity

Civil Engineering I
  • Ch. Massonnet
Part of the International Centre for Mechanical Sciences book series (CISM, volume 241)

Abstract

The purpose of this course is to present, in condensed form, the methods of the theory of plasticity and especially of Limit Analysis and Design, with emphasis on problems pertaining to civil engineering.

Keywords

Yield Surface Plastic Hinge Limit Load Collapse Mechanism Plastic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    ADES C.S. “Experimental Mechanics”. 1962, p. 345–349.Google Scholar
  2. [B1]
    BLEICH H. “Uber die Bemessung statisch unbestimmter Stahltragwerke unter Berücksichtigung des elastich — plastichen Verhaltens des Baustoffes Bauingenieur, vol. 19–20, 1932, p. 261.Google Scholar
  3. [B2]
    BRZEZINSKI R., KÖNIG J.A. “Evaluation of shakedown deflections of framed structures by linear programming”. Proceedings of the Symposium on Plastic Analysis of Structures, vol. II, Jassy, 6–8 September 1972, p. 101–116.Google Scholar
  4. [B3]
    BRZEZINSKI R., KÖNIG J.A. “Deflection Analysis of elastic-plastic frames at shakedown”. Journal Struct. Mech., vol. II, 1973, p. 211–228.Google Scholar
  5. [Cl]
    CHARNES A., GREENBERG H.J. “Plastic collapse and linear programming”. Amer. Math. Soc. Abs No. 506, 1951.Google Scholar
  6. [C2]
    COHN M.Z., GHOSH S.K., PARIMI S.R. “A Unified approach to the theory of plastic structures”. Proc. ASCE, Journ. E.M. Div., Oct. 1972.Google Scholar
  7. [C3]
    COHN M.Z. “Analysis and Design of Inelastic Structures”. Vol. 2: Problems. University of Waterloo Press, 1972, 521 pp.Google Scholar
  8. [C4]
    COHN M.Z., RAFAY T. “Collapse load analysis of frames considering axial forces”. Proc. ASCE, Journ. Engng. Mech. Div., No. EM4, 1974, p. 773–794.Google Scholar
  9. [C5]
    CASCIARO R., DI CARLO A. “Formulazione’ dell’analisi limite delle piastre come problema di minimax mediante una rappresentazione agli elementi finiti del campo delle tension”. Giorn. Genio Civile, 1970.Google Scholar
  10. [Dl]
    DRUCKER D.H., PRAGER W., GREENBERG H.J. “Extended limit design theorems for continuous media”. Quart. Appl. Math., vol. IX, 1952, p. 381.Google Scholar
  11. [D2]
    DEMONSABLON P. “Le calcul à la rupture des fondations sur groupes de pieux”. Construction, vol. XX, 1965, p. 279–289.Google Scholar
  12. [El]
    EMKIN L.Z., LITTLE W.A. “Plastic design of multistory steel frames by computer”. Proc. ASCE, Jour. Str. Div., Nov. 1970 and Jan. 1972.Google Scholar
  13. [Fl]
    FOULKES J. “The minimum weight design of structural frames”. Proc. Royal Soc., London, Series A, vol. 223, 1954, p. 82.CrossRefMathSciNetGoogle Scholar
  14. [F2]
    FREY F. “Effet du dressage à froid des profilés laminés en double té sur leur force portante”. Mémoires AIPC, vol. 29 II, 1969, p.Google Scholar
  15. [F3]
    FREY F., RONDAL J., FOURNEAUX N. “Application de la méthode des éléments finis à la résolution des problèmes de structure de l’ingénieur civil”. Mémoires CERES, Univ. de Liège, No. 48, Juillet 1974.Google Scholar
  16. [F4]
    FRAEIJS DE VEUBEKE J.B. “Upper and lower bounds in Structural Analysis”. Agardograph No. 72, July 1969. Pergamon Press, 1964.Google Scholar
  17. [F5]
    FRAEIJS DE VEUBEKE J.B. “Displacement and equilibrium models in the finite element method”. Chapter 9 in “Stress Analysis”, editor O.C. Zienkiewicz, John Wiley ed., 1965.Google Scholar
  18. [F6]
    FACCIOLI E., VITIELLO E. “Finite element, linear programming method for the limit analysis of thin plates”. Int. Journ. for Numer. Method in Engng., vol. V, 1973, p. 311–325.Google Scholar
  19. [G1]
    GVOZDEV A.A. “The determination of the value of the collapse load for statically indeterminate systems undergoing plastic deformation”. Proc. of the Conf. on Plastic Deformations, Akademia Nauk U.S.S.R., Moscow, Dec. 1936.Google Scholar
  20. [G2]
    GRIERSON D.E. “Computer based methods for the plastic analysis and design of building frames”, Report to Technical Committee 15 of the IABSE-ASCE Committee on planning and design of tall buildings, August 1974. ( Unpublished).Google Scholar
  21. [H1]
    HILL R. “The Mathematical Theory of Plasticity”. Clarendon Press, Oxford, 1950.MATHGoogle Scholar
  22. [H2]
    HILL R. “On the state of stress in a plastic-rigid body at the yield point”. Phil. Mag., vol. 42, 1951, p. 868.MATHGoogle Scholar
  23. [H3]
    HELLAN K. “Journal of Engineering Materials and Technology”. vol. 96, 1974, p. 78–80.Google Scholar
  24. [H4]
    HEYMAN J. “The Stone Skeleton”. Int. Journ. of Solids and Structures, vol. II, 1966, p. 249–279.Google Scholar
  25. [H5]
    HENCKY H. “Zeitschrift für Angewandte Mathematik und Mech.”, vol. IV, 1924, p. 323.Google Scholar
  26. [H6]
    HODGE P.G. Jr.. BELYTSCHKO T. “Numerical methods for the limit analysis of plates”. Jour. App’. Mech., vol. 35, 1968, p. 797–802.Google Scholar
  27. [H7]
    HOCHFELD D.A. “Carrying capacity of Structures in conditions of temperature variations.’ (in russian. Maskinosrr., Mo,çow 1970.Google Scholar
  28. [H8]
    HORNE M.R. “The effect of variable repeated loads in building structures designed by the plastic theory”. IABSE Publications, vol. 14, 1954, p. 53.Google Scholar
  29. [H9]
    HORNE M.R., MORRIS L.J. “Optimum design of multistorey rigid frames”. Chapter 14 of the book by Gallagher and Zienkiewicz: Optimum Structural Design, John Wiley ed., 1973.Google Scholar
  30. [I1]
    ILYUSHIN A.A. “Plasticité”. Eyrolles ed., Paris, 1956.Google Scholar
  31. [K1]
    KOITER W.T. “General Theorems for Elastic-plastic Bodies. Chapter IV, p. 167–224 of Progress in Solid Mechanics”, vol. I, edited by I.N. Sneddon and R. Hill-NorthHolland Publishing Company, Amsterdam, 1960.Google Scholar
  32. [K2]
    KÔNIG J.A. “On shakedown design of structures with temperature depending elastic modules”. Proc. 1st International Conference on Structural Mechanics in Reactor Technology, vol. VI, part L, Berlin, Sept. 1972, p. 503–517.Google Scholar
  33. [K3]
    KONIG J.A. “Deflection bounding at shakedown under thermal and mechanical loadings”. Proc. 2nd International Conference on Structural Mechanics in Reactor Technology, vol. 5, part L, Berlin, Sept. 1973, p. 1–13.Google Scholar
  34. [K4]
    KACHANOV L.M. “Foundations of the theory of plasticity”. North-Holland Publ. Co., 1971.Google Scholar
  35. [L1]
    LEBLOIS C., MASSONNET C. “Influence of the upper yield stress on the behaviour of mild steel in bending and torsion”. Inter. Journ. of Mech. Sciences, vol. 14, 1972, p. 95–115.CrossRefGoogle Scholar
  36. [M1]
    VON MISES R. “Göttinger Nachrichten”. Math.-Phys. Klasse, 1913, p. 582.Google Scholar
  37. [M2]
    MAIER—LEIBNITZ H. “Bautechnik”, vol. 6, 1928, p. 11.Google Scholar
  38. [M3]
    MELAN E. “Zur Plastizität des räumlichen Kontinuums”. Ing. Archiv., vol. 9, 1938, p. 116.CrossRefMATHGoogle Scholar
  39. [M4]
    MASSONNET C., MAUS H. “Force portante plastique des systèmes de pieux”. Symposium on the Use of Computers in Civil Engineering, vol. I, No. 12, Lisbonne, 1962.Google Scholar
  40. [M5]
    MASSONNET C., SAVE M. “Résistance limite d’une poutre courbe en double té à parois minces soumise à flexion pure”. Publications AIBSE, vol. 23, 1964, p. 245.Google Scholar
  41. [M6]
    MASSONNET C., SAVE M. “Plastic Analysis and Design”. Vol. I: Beams and Frames. Blaisdell Publ. Co., New York, 1965.Google Scholar
  42. [M7]
    MASSONNET C., SAVE M. “Calcul Plastique des Constructions”. Vol. I: Structures dependant d’un paramètre. 2è édition, CBLIA éditeur, Bruxelles, 1967.Google Scholar
  43. [M8]
    MASSONNET C. “Développement d’un programme automatique de dimensionnement plastique des structures planes en acier à l’aide de la programmation linéaire”. Proc. pf the Symposium on Plastic Analysis of Structures, vol. 2, Jassy, 6–8 Sept. 1972, p. 238–259.Google Scholar
  44. [M9]
    MASSONNET C. “Résistance des Maériaux”. Tome II, 2è édition, G. Thone éditeur, 1973.Google Scholar
  45. [M10]
    MASSONNET C., RONDAL J. “Structural Mechanics and Optimization”. General Lecture at the 16 th Polish Solid Mechanics Conference, Krynica 26 August - 3 September 1974. ( To be published).Google Scholar
  46. [M11]
    MASSONNET C., SAVE M. “Résistance limite d’une poutre courbe en caisson soumis à flexion pure”. Amici e Alumini, (The Campus Anniversary Volume), Liège, 1964.Google Scholar
  47. [M12]
    MURRAY D.W., WILSON E.L. “Finite element large deflection analysis of plates”. Proc. ASCE, J. Engng. Mech. Div., vol. 95, 1969, p. 143.Google Scholar
  48. [M13]
    MARKOV A.A. “On variational Principles in Theory of Plasticity”. Prikladnaia Matematika i Mekhanika, vol. II, 1947, p. 339–350.Google Scholar
  49. [M14]
    MARCAL P.V., KING I.P. “Elastic-plastic analysis of two-dimensional stress systems by the Finite Element method”, Int. J. Mech. Sci. 9, 1967, 143.CrossRefGoogle Scholar
  50. [N1]
    NADAI A. “Plasticity”. Mac GrawHill, New York, 1931.Google Scholar
  51. [N2]
    NEAL B.G., SYMONDS P.S. “The rapid calculation of the plastic collapse load of a framed structure”. Proc. Inst. Civil Engineers, vol. 1, London, 1952, p. 58–71.Google Scholar
  52. [N3]
    NEAL B.G. “The plastic methods of structural analysis”. Second edition, Chapman and Hall, 1963.Google Scholar
  53. [N4]
    NAYAK G.C., ZIENKIECWICZ O.C. “Elasto-plastic stress analysis; a generalization for various constitutive relations including strain softening”. Int. Journ. for Num. Methods in Engn., vol. 5, 1972, p. 113.CrossRefMATHGoogle Scholar
  54. [N5]
    NGUYEN DANG HUNG “Displacement and equilibrium methods in matrix analysis of trapezoidal Structures”. Collection des Publications de la Fac. des Sciences Appl. de l’Université de Liège, No. 21, 1970.Google Scholar
  55. [N6]
    NUYEN DANG HUNG “Analyse limite rigide plastique par une méthode quasi-directe”. Sciences et Techn. de l’Armement, 2è fasc., 1970.Google Scholar
  56. [P1]
    PRAGER W. “A new method of analysing stress and strain in work-hardening solids”. Journ. Appl. Mech., vol. 23, 1956, p. 493.MATHMathSciNetGoogle Scholar
  57. [P2]
    PRAGER W. “Théorie générale des états limites d’équilibre”. Jour. Math. pures et appliquées, vol. 34, 1955, p. 4.MathSciNetGoogle Scholar
  58. [P3]
    PRAGER W. “Problèmes de plasticité théorique”. Dunod, Paris, 1958.Google Scholar
  59. [P4]
    PRAGER W. “Shakedown in elastic-plastic media subjected to cycles of load and temperature”. Symposium on “Plasticità nella Scienza delle Costruzioni”, Bologna, 1957, p. 122–125.Google Scholar
  60. [P5]
    PONTER A.R.S. “Journal of Applied Mechanics”, vol. 39, 1972, p. 953–958 and p. 959–963.Google Scholar
  61. [P6]
    PIAN T.H.H. “Formulations of Imite element methods for solid continua”. US Japan Seminar on Structural Analysis, Tokyo, 1969.Google Scholar
  62. [R1]
    RANAWEERA — LECKIE F.A. “Bound methods in limit analysis. ”Proc. Seminar on F.E. Techniques in Structural Mechanics, H. Tottenham and C. Brebbia editors, University of Southampton, 1970.Google Scholar
  63. [R2]
    RIMAWI W.H. — DOGANE “Experiments on yielding of tension specimens with notches and holes”. Experimental mechanics, vol. 10, Oct. 1970.Google Scholar
  64. [S1]
    SOKOLOWSKY V.V. “Theorie der Plastizität”. V.E.B. Verlag Technik, Berlin, 1955.Google Scholar
  65. [S2]
    SAWCZUK A., RYCHLLEWSKI J. “On Yield Surfaces for Plastic Shells”. Archiwum Mechaniki Stosowanej, vol. I, 1960, p. 12.Google Scholar
  66. [S3]
    SAVE M.A., MASSONNET C.E. “Plastic Analysis and Design of Plates, Shells and Disks”. North-Holland Publishing Co., Amsterdam, 1972.MATHGoogle Scholar
  67. [S4]
    STANG A.H., GREENSPAN M., NEWMAN S.D. Journ. Research Nat. Bur. Standards, vol. 37, No. 4, Oct. 1946.Google Scholar
  68. [S5]
    SADOWSKY N.A. “A principle of maximum plastic resistance”. Journ. Appl. Mech., vol. X, 1943, p. 65–68.Google Scholar
  69. [S6]
    SAYEGH A.F., RUBINSTEIN M.F. “Elastic-plastic analysis by quadratic programming”. Proc. ASCE, Journ. Engng. Mech. Div., 1972, p. 1547–1572.Google Scholar
  70. [T1]
    THEOCARIS P.S., MARKETOS E. “Elastic-plastic analysis of perforated thin strips of strain-hardening material”. Journ. of Mech. and Phys. of Solids, vol. XII, 1964, p. 377.Google Scholar
  71. [W1]
    WASHIZU K. “Variational methods in elasticity and plasticity”. Pergamon Press, Oxford, 1968.MATHGoogle Scholar
  72. [Yl]
    YAMAHA Y., YOSHIMURA N., SAKURAI T. “Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method”. Int. Journ. Mech. Sci., 10, 1968, p. 343.CrossRefGoogle Scholar
  73. [Z1]
    ZIENKIEWICZ O.C., VALLIAPPAN S., KING I.P. “Elasto-plastic solutions of engineering problems: Initial stress, Imite element approach”. Int. Journ. for num. methods in engng., vol. I, 1969. p. 75.Google Scholar
  74. [Z2]
    ZIENKIEWICZ O.C. “The finite element in engineering science.” Mac Graw Hill, London, 1971.Google Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • Ch. Massonnet
    • 1
  1. 1.University of LiègeBelgium

Personalised recommendations