Some Tools for the Study of Channel-Sharing Algorithms

  • Gabriel Ruget
Part of the International Centre for Mechanical Sciences book series (CISM, volume 265)


We will only discuss discrete-time algorithms, with messages of standard length, equal to the discretization step: this may imply some agglutinations in the process of message arrivals, but we will neglect them.


Fast Simulation Global Output Poisson Variable Large Deviation Result Message Arrival 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-R]
    AZENCOTT-RUGET : Mélanges d’équations différentielles et grands écarts à la loi des grands nombres, Zeit. f. War. vol. 38, p. 1 (1977)Google Scholar
  2. [B-G]
    BANH TRI AN and GELENBE : Near-optimal behavior of the packet switching broadcast channel, Rapport de recherche n° 13 (1978), L.R.I., Université Paris-Nord, Orsay.Google Scholar
  3. [C-F-M]
    COTTRELL-FORT-MALGOUYRES : Preprint Université Paris-Sud et Proceedings of the International Conference on Information Sciences and Systems, Patras, Greece, July 9–13, 1979Google Scholar
  4. [D-V]
    DONSKER-VARADHAN : Asymptotic evaluation of certain Markov process expectation for large time. Comm. Pure. Appl. Math. vol. 28, p. 1, vol. 29, p. 279 et vol. 29 p. 389.Google Scholar
  5. [F-G-L]
    FAYOLLE-GELENBE-LABETOULLE : Stability and optimal control of the packet switching broadcast channel J.A.C.M., vol. 24, n° 3 (1977), p. 375Google Scholar
  6. [G]
    GARTNER : On large deviations for the invariant measure Th. Prob, and Appl., vol. 22, p. 24 (1977)ADSCrossRefMathSciNetGoogle Scholar
  7. [K]
    KHASMINSKII : A limit theorem for the solutions of differential equations with random right-hand sides Th. Prob, and Appl. vol. 11, p. 390 (1966)CrossRefGoogle Scholar
  8. [L]
    LUDWIG ; Persistence of dynamical systems under random perturbations. Siam Review, vol. 17, n° 4, p. 605 (1975)CrossRefMATHMathSciNetGoogle Scholar
  9. [M]
    MOLCHANOV : Diffusion processes and riemannian geometry. Russ. Math. Surveys, vol. 30, n° 1, p. 1 (1975)ADSCrossRefMATHGoogle Scholar
  10. [R]
    RUGET : Quelques occurences des grands écarts dans le littérature “électronique” dans le Séminaire de Statistique d’Orsay, 1977–1978, publ. by S.M.F. (Astérisque n° 68)Google Scholar
  11. [V]
    VENTSEL : Rough limit theorems on large deviations for Markov stochastic processes. Th. Prob. and Appl., vol. 21, p. 227 et p. 499 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1981

Authors and Affiliations

  • Gabriel Ruget
    • 1
  1. 1.MathématiquesUniversité Paris-Sud (Centre d’Orsay)ORSAYFrance

Personalised recommendations