Surface Interaction and Applications

  • Silvio Nocilla
Part of the International Centre for Mechanical Sciences book series (CISM, volume 224)


Let us consider a missile moving in the upper atmosphere at an altitude between 150 and 300 km, where the atmosphere is very rarefied, with density of the order of 10−9, 10−10times the normal one. It is known from the kinetic theory of gases that the mean free-path λ of the air molecules is given by the formula:

m = mass of a molecule = M · 1.68 10−24 gr

(M = molecular weight)

ρ = density

T = absolute temperature

KS = Sutherland constant = 110°K

σ e = cross section for the molecular collisions (such that a shock arises when the distance between the centers of the two molecules is less than σ e), independent on ρ and T. It is assumed σ e 2 = 10−15 cm 2 .


Molecular Beam Surface Interaction Surface Element Flux Statistic Velocity Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    KALLMANN H.K., SIBLEY W.L. — Diurnal variation of temperature and density between 100 Km and 500 Km — Space Research; pp. 270–296 (1963).Google Scholar
  2. [2]
    FRENKEL J.: Theorie der adsorption und verwander ercheinungen. Z. Phys. 26, 117 (1924).CrossRefMATHGoogle Scholar
  3. [3]
    DE BOER J.H. — The dynamical character of adsorption — Oxford University Press (1953).Google Scholar
  4. [4]
    NOCILLA S. — Sorgenti e pozzi superficiali di molecole libere ed applicazioni. Parte I — Atti Acc. Scienze Torino, 99, 805 (1964–65). Parte II — Confronti con risultati sperimentali — ibidem, 100, 447 (1965–66).Google Scholar
  5. [5]
    NOCILLA S.: Theoretical determination of the aerodynamics forces on satellites. Astro. Acta, 17, 245 (1972).Google Scholar
  6. [6]
    NOCILLA S. — The surface re-emission law in free-molecule flow-3rd RGD Symp.; vol. 1, 327, Acad. Press (1963).Google Scholar
  7. [7]
    HURLBUT F.C., SHERMAN F.S.: Application of the Nocilla wall reflection model to free-molecule kinetic theory. Phys. of fluids, 11, 486 (1968).CrossRefGoogle Scholar
  8. [8]
    HURLBUT F.C.: Rand Rept 339, 21–1 (1959).Google Scholar
  9. [9]
    KOGAN M.N.: Rarefied Gas Dynamics. Plenum Press, New York (1969).CrossRefGoogle Scholar
  10. [10]
    GOODMAN F.O.: Review of the theory of the scattering of gas atoms by solid surfaces. Surface Science, 26, 327 (1971).CrossRefGoogle Scholar
  11. [11]
    HURLBUT F.C.: Gas surface interaction studies employing three-dimensional coupled lattice model. 2nd symp. jèts moléculaires, Entropie 30, 107 (1969).Google Scholar
  12. [12]
    GOODMAN F.O.: Interaction potentials of gas atoms with cubic lattices on the 6–12 pairwise model. Phys. Rev. 164, 1113 (1967).CrossRefGoogle Scholar
  13. [13]
    RAFF L.M., LORENZEN J., McCoy B.C.: Theoretical investigations of gas-solid interaction phenomena, I. Jour.Chem.Phys. 46, 4265 (1967).CrossRefGoogle Scholar
  14. [13]
    LORENZEN J., RAFF L.M.: Idem, II: Three dimensional treatment. Jour. Chem. Phys., 49, 1165 (1968).CrossRefGoogle Scholar
  15. [14]
    OMAN R., BOGAN A., LI C.H. — Theoretical prediction of momentum and energy accommodation for hypervelocity gas particles on an ideal crystal surface — 4 RGD Symposium vol. II, 396, Academic Press (1966).Google Scholar
  16. [15]
    LOGAN R., HECK J., STICKNEY R. — Simple classical model for the scattering of gas atoms from a solid surface: additional analyses and comparisons — 5 RGD Symp., vol. I, 49, Academic Press (1967).Google Scholar
  17. [16]
    CHIADO’PIAT M.G.: Studies on the behaviour of gas molecules scattered by a solid surface: analyses for mono-energetic beams. Entropie, 30, 103 (1969).Google Scholar
  18. [17]
    STICKNEY R.E., HURLBUT F.G. — Studies of normal momentum transfer by molecular beam techniques — 3rd RGD Symp. 454, Acad. Press (1963).Google Scholar
  19. [18]
    NOCILLA S., CHIADO’PIAT M.G. — Studies on the behaviour of gas molecules scattered by a solid surface: normal incidence — 6 RGD Symp., vol. 2, 1069, Academic Press (1969).Google Scholar
  20. [19]
    CHIADO’PIAT M.G., RIGANTI R.: An impulsive tridimensional interaction model in free molecule flow. Entropie 49, 46 (1973).Google Scholar
  21. [20]
    DEVIENNE F., ROUSTAN J. CLAPIER R. — Speed distribution of scattering molecules after the impact of a high velocity molecular beam on a solid surface — 5 RGD Symp., vol. 1, 269, Academic Press (1967).Google Scholar
  22. [21]
    O’KEEFE D., PALMER R., SMITH J. — Rare gas scattering from LiF: III multilobular structure for neon — Gulf radiation technology, San Diego Calif., RT —10543 (1971).Google Scholar
  23. [22]
    McCLURE J.: Surface rainbows: a similitude between classical and diffractive scattering of atoms from cristalline surfaces. Jour.Chem.Phys., 52, 2712 (1970).CrossRefGoogle Scholar
  24. [23]
    McCLURE J., WU JAN — Atomic and molecular scattering from solids: I, planar scattering from one–dimensional surface arways (an extendet data set) — Scientific research laboratories D1–82–0732 (1968).Google Scholar
  25. [24]
    NOCILLA S.: Recent theories on the interaction between molecular beams and surfaces. Entropie 49, 37 (1973).Google Scholar
  26. [25]
    BELLOMO N.: Upper atmosphere density measurement by the Sputnik III and San Marco satellites. Astro.Acta 18, 289 (1974).Google Scholar
  27. [26]
    RIGANTI R., CHIADO’PIAT M.G. — Drag and lift coefficient in hyperthermal free-molecule flow — T.N. 78, Ist.Mecc.Appl. Aerod.Gasd. Politecnico Torino. Also (in Italian) in: Atti 1 Congresso Naz. AIMETA, Udine (1971).Google Scholar

Copyright information

© Springer-Verlag Wien 1981

Authors and Affiliations

  • Silvio Nocilla
    • 1
  1. 1.Politecnico di TorinoItaly

Personalised recommendations