Indirect Methods: Correction of the Results of System Analysis by Results of Identification — A Survey

  • H. G. Natke
Part of the International Centre for Mechanical Sciences book series (CISM, volume 272)


System analysis based on design drawings yields the computational model (Fig. 1). System identification results in the test model (Fig. 2). The question arises: What has to be done with both results? In general, the values of the computational model differ from the corresponding magnitudes of the test model. Therefore a correction is needed to improve the computational model by identification results (Fig. 3). This means that the adjustment of the calculated values to the measured ones has to be introduced in such a manner that the properties of the configurations which are not measured will also be improved. If the identified values themselves are not needed for special purposes, the expensive identification, e.g. of eigen-magnitudes, proves to be unnecessary. A more straightforward and inexpensive method is, for example the measurement of dynamic responses to well-defined inputs and the optimization of the computational model.


Test Model Stiffness Matrix Indirect Method Adjustment Procedure Flexibility Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Natke, H.G., Vergleich von Algorithmen für die Anpassung des Rechenmodells einer schwingungsfähigen elastomechanischen Struktur an Versuchswerte, ZAMM 59, p. 257–268, 1979CrossRefMATHGoogle Scholar
  2. 2.
    Stoer, J., Einführung in die Numerische Mathematik I, Heidelberger Taschenbücher Bd. 105, Springer-VerlagGoogle Scholar
  3. 3.
    Natke, H.G. and Schulze, H., Parameter Adjustment of a Model of an Offshore Platform from Estimated Eigenfrequencies data, Journal of Sound and Vibration, Vol. 77, No. 2, p. 271–285, 1981ADSCrossRefGoogle Scholar
  4. 4.
    Natke, H.G., Collmann, D. and Zimmermann, H., Beitrag zur Korrektur des Rechenmodells eines elastomechanischen Systems anhand von Versuchsergebnissen, VDI-Berichte Nr. 221, p. 23–32, 1974Google Scholar
  5. 5.
    Zimmermann, H., Collmann, D. and Natke, H.G., Erfahrungen zur Korrektur des Rechenmodells mit gemessenen Eigenfrequenzen am Beispiel des Verkehrsflugzeuges VFW 614, Z. Flugwiss. Weltraumforsch. 1, Heft 4, p. 278–285, 1977MATHGoogle Scholar
  6. 6.
    Demchak, L. and Harcrow, H., Analysis of Structural Dynamic Data from Skylab, (1) Technical Discussion, NASA CR 2727, 1976Google Scholar
  7. 7.
    Natke, H.G., Die Korrektur des Rechenmodells eines elastomechanischen Systems mittels gemessener erzwungener Schwingungen, Ing.-Arch. 46, p. 169–184, 1977CrossRefMATHGoogle Scholar
  8. 8.
    Felgenhauer, H.-P., Die Korrektur von Rechenmodellen für gedämpfte elastische Systeme mittels gemessener erzwungener Schwingungen, ZAMM 61, Heft 1 /5, 1981Google Scholar
  9. 9.
    Felgenhauer, H.-P., Korrektur von Rechenmodellen für gedämpfte elastische Systeme mittels gemessener erzwungener Schwingungen, Fortschritt-Berichte der VDI-Zeitschriften Reihe 11, Nr. 37, 1981Google Scholar
  10. 10.
    Collins, J.D., Hart, G.C., Hasselmann, T.K. and Kennedy, B., Statistical Identification of Structures, AIAA Journal 12, p. 185–190, 1974ADSCrossRefMATHGoogle Scholar
  11. 11.
    Beliveau, J.G., Identification of Viscous Damping in Structures from Modal Information, J. Appl. Mech. E 43, p. 335–339, 1976ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • H. G. Natke
    • 1
  1. 1.Curt-Risch-InstitutUniversität HannoverGermany

Personalised recommendations