Indirect Identification Methods I: Adjustment of Mathematical Models by the Results of Vibrations Tests: Using Eigensolutions

  • G. Lallemetit
Part of the International Centre for Mechanical Sciences book series (CISM, volume 272)


This lecture is devoted to the study of some adjustment procedures for the models of mechanical structures. This adjustment is obtained by the results of the tests done on a prototype of the structure and is based on the comparison of the calculated and identified eigensolutions. Its aim is to improve the precision with which the state equation permit to predit the dynamical behaviour. This lecture is limited to the case of linear mechanical structures, asymptotically stable, which can be represented by discrete models and constant, symmetrical, simple structure state matrices. The extension to the case of non symmetrical matrices is possible but first of all imply, for some of the proposed methods, the identification of the two sets of right and left eigenvectors.1,2


Design Variable Scalar Equation Left Eigenvector Conservative Force Design Variable Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DANEK, Problèmes d’identification. Applications aux machines, EUROMECH131, Identification problems in structural dynamics,24–27 juin 1980, Besançon (France) (to be published in the proceedings of the Colloquium)Google Scholar
  2. 2.
    FILLOD R. Contribution à l’identification des structures mécaniques linéaires, Thèse Docteur ès Sciences, Laboratoire de Mécanique Appliquée, Faculté des Sciences de Besançon, 1980Google Scholar
  3. 3.
    BUGEAT L.P., LALLEIIENT G., Methods of matching of calculated and identified eigensolutions, Proceedings of the XIIth Conference on Dynamics of Machines, Slovak Academy of Sciences, Institut of Machine Mechanics, 80931 Bratislava, Dubrayska Cesta, CSSR, 81, 1979Google Scholar
  4. 4.
    BUGEAT L.P., Ajustement des caractéristiques dynamiques d’un modèle discret conservatif non gyroscopique au comportement identifié sur structure, Thèse Docteur-Ingénieur, Faculté des Sciences de Besançon, Besançon 1978 - L.R. BUGEAT, FILLOD R., LALLEMENT G., PIRANDA J., Ajustement of a conservative non gyroscopic mathematical model from measurement, The Shock and Vibration Bulletin, Part.3, 71, sept. 1978Google Scholar
  5. 5.
    DONE G.T.S., Adjustment of a rotor model to achieve agreement between calculated and experimental natural frequencies, Journal of Mechanical Engineering Science, vol.21, n°6, 389; 1979Google Scholar
  6. 6.
    CHEN J.C., GARBA J.A., Matrix perturbation for analytical model improvement, Proceedings of the AIAA/ASME/AHS 20th Structures, Structural Dynamics and Materials Conferences, St Louis, 428, April 1979Google Scholar
  7. 7.
    BERGER H., CIIAQUIN J.P., OHAYON R., Une méthode d’identification de modèles de structures complexes utilisant des résultats d’essais de vibration, EUROMECH 131, Identification problems in Structural Dynamics,24–27 juin 1980, Besançon (France)Google Scholar
  8. 8.
    FRADELLOS G., EVANS F.J. - Improvement of dynamic models by inverse eigenproperty assigment, Appl. Math. Modelling, vol. 2, 123, June 1978CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    LALLEMENT G., Recalage de modèles mathématiques de structures mécaniques; CEA-EDF, Cycle de Conférences sur les vibrations dans le domaine industriel, Jouy en Josas, octobre 1979Google Scholar
  10. 10.
    BOUGHANEM M., Identification paramétrique de modèles conservatifs de structures mécaniques, Thèse Doct. Ing., Université de Franche-Comté, Besançon (France) octobre 1979Google Scholar


  1. NATKE H.G., Indirect identification methods III: Correction of the results of system analysis by results of identification - a Survey, identification of vibrating structures, CISM Udine, 1980Google Scholar
  2. WHITE C.W., MAYTUM B.D., Eigensolution sensitivity to parametric model perturbations, The Shock and Vibration Bulletin, n°46, part. 5, 123, 1976Google Scholar
  3. WADA B.K., GARBA J.A., CHAN J.C., Development and correlation: viking orbiter analytical dynamic model with modal test, The Shock and Vibration Bulletin, n°44, part. 2, 125, 1974Google Scholar
  4. GARBA J.A., WADA B.K., Application of perturbation methods to improve analytical model correlation with test data, ASME-SAE, Aerospace Meeting, Los Angeles, paper n°770959, Nov.1977Google Scholar
  5. CHROSTOWSKI H.D., EVENSEN D.A., HASSELMAN T.K., Model verification of mixed dynamic systems, Journ. of Mech. Design, Vol. 100, 266, April 1978.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • G. Lallemetit
    • 1
  1. 1.LABORATOIRE DE MECANIQUE APPLIQUEE, associé au CNRSUniversity of BesançonBesancon CedexFrance

Personalised recommendations