Multi-Degree-of-Freedom Systems- A Review

  • H. G. Natke
Part of the International Centre for Mechanical Sciences book series (CISM, volume 272)


Investigations and qualifications of the dynamic behaviour of complex vibrating structures require system analysis (based on drawings) and system identification if experience with comparable structures is not available. System identification may be understood as a three-stage process:


Spectral Decomposition Inertia Matrix Damp System Amplitude Vector Gyroscopic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Natke, H.G., Probleme zur Modellierung und Kenndatenermittlung dynamischer Systeme am Beispiel alternativer Fragestellungen; Fachseminar spurgeführter Fernverkehr, Rad/Schiene - Technik - Zusammenwirken von Fahrzeug und Fahrweg, Augsburg - Mai 1979Google Scholar
  2. 2.
    Wilkinson, J.H., The algebraic eigenvalue problem, Clarendon Press, 1965Google Scholar
  3. 3.
    Caughey, T.K., Classical normal modes in damped linear dynamic systems, J. Appl. Mech. 27, 269, 1960ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Caughey, T.K., M.E.J. O’Kelly, Classical normal modes in damped linear dynamic systems, J. Appl. Mech. 32, 583, 1965ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lancaster, P., Lambda-matrices and vibrating systems, Pergamon Press, 1966Google Scholar
  6. 6.
    Veubeke de Fraejis, B.M., A variational approach to pure mode excitation based on characteristic phase lag theory, AGARD Rep. 39, 1956Google Scholar
  7. 7.
    Veubeke de Fraejis, B.M., Les déphasages caractéristiques en présence des modes rigides et de modes non amortis, Academic royal de Belgique, Bulletin de la Classe des Sciences, (5) 51, 1965Google Scholar
  8. 8.
    Natke, H.G., A method for computing natural oscillation magnitudes from the results of vibration testing in one exciter configuration, NASA-TT-F-12446, 1969Google Scholar
  9. 9.
    Natke, H.G., Die Berechnung der Eigenschwingungsgrößen eines gedämpften Systems aus den Ergebnissen eines Schwingungsversuches in einer Erregerkonfiguration, Jahrbuch der DGLR, 98, 1971Google Scholar
  10. 10.
    Natke, H.G. et al., Zeitreihen–und Modalanalyse, Identifikation technischer Konstruktionen, VDI–BW 32–22–03, Düsseldorf, 1981Google Scholar
  11. 11.
    Müller, P.C., W.O. Schiehlen, Lineare Schwingungen, Akademische Verlagsanstalt, 1976Google Scholar
  12. 12.
    Eykhoff, P., System identification - Parameter and state estimation, John Wiley and Sons, 1974Google Scholar
  13. 13.
    KortUm, W., N. Niedbal, Application of modern control theory to modal survey techniques, Lecture held at the EUROMECH 131, Besançon, 1980Google Scholar
  14. 14.
    Dat, R., L’essai de vibration d’une structure imperfaite- ment lineaire, La Rech. Aerospatiale, No. 4, 223, 1975Google Scholar
  15. 15.
    Chandivert, M.G., Considerations relevant to the vibration testing of aeronautical structures having non-ideal characteristics, Dep. of Supply, Australian Defence Scientific Service, ARL/SM. 355, 1970Google Scholar
  16. 16.
    Dat, R., R. Otiayon, Structural vibration testing methods and the correction of the theoretical models, Lecture held at the EUROMECH 131, Besançon, 1980Google Scholar
  17. 17.
    Natke, H.G., Fehlerbetrachtungen zur parametrischen Identifikation eines Systems mit kubischem Steifigkeitsund Dämpfungsterm; Czerwenka-Festschrift, TU München, 1979Google Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • H. G. Natke
    • 1
  1. 1.Curt-Risch-InstitutUniversität HannoverGermany

Personalised recommendations