Advertisement

Some Modern Developments in System Identification Using Parameter Estimation Methods

  • H. Unbehauen
Part of the International Centre for Mechanical Sciences book series (CISM, volume 272)

Abstract

Process identification by parameter estimation methods has been used successfully in practical application during recent years. Variations and modifications of the models and the estimation algorithm often had to be developed to overcome the special needs of the investigated processes, because ‘classical’ parameter estimation methods are limited usually to linear, time-invariant single-input/single-output systems. Most practical processes, however, belong to one of the following system classes:
  • time-variant systems,

  • nonlinear systems,

  • closed loop systems,

  • multi-input/multi-output systems, or

  • distributed parameter systems.

Keywords

Blast Furnace State Space Model Modern Development Distribute Parameter System Parameter Estimation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, J. (1972), Abtastregelungen, Springer Verlag.Google Scholar
  2. Bauer, B. (1977), Parameterschâtzverfahren zur on-line Indent. dynamischer Systeme im offenen und geschlossenen Regelkreis. Diss.Ruhr-Universitât Bochum.Google Scholar
  3. Budin, M.A. (1971), Minimal realization of discrete linear systems from input-output observation. IEEE Tr. AC, 16, pp. 395–401.CrossRefMathSciNetGoogle Scholar
  4. Budin, M.A. (1972), A new approach to system ident., IEEE Tr. SMC, 2, pp. 396–402.MATHMathSciNetGoogle Scholar
  5. Caines, P.E., Chan, C.W. (1975), Feedback between stationary stochastic processes. IEEE Tr. AC, 20, pp. 498–508.CrossRefMATHMathSciNetGoogle Scholar
  6. Chavent, G. (1979), On the identification of distributed parameter systems, IFAC Symp. Darmstadt, FRG.Google Scholar
  7. Diekmann, K., Unbehauen, H. (1979), Recursive identification of multi-input, multi-output systems, IFAC Symp. Darmstadt, FRG.Google Scholar
  8. Diekmann, K., Unbehauen, H. (1981) Identif. of submodels of multi-input, multi-output ystems. Int. Conf. on ‘Control and its Applications’, Warwick.Google Scholar
  9. Gevers, M.R. (1976), On the identification of feedback systens. IFAC Symp. Tiflis, USSR.Google Scholar
  10. Goodson, R.W., Polis, M.P. (1976), Parameter identification in distributed systems, Proc. IEEE, V. 64.Google Scholar
  11. Gopinath, B. (1969), On the identi. of linear time-invariant systems from input-output data. Bell System Techn. J., 48, pp. 1101–1113.CrossRefMATHMathSciNetGoogle Scholar
  12. Graupe, D. (1972), Identification of systems. Van Nostrand Reinhold Comp., New York.MATHGoogle Scholar
  13. Graupe, D. (1975), On identifying stochastic closed-loop systems. IEEE Trans. AC-20, Np. 4, pp. 553–555.Google Scholar
  14. Guidorzi, R. systems IEEE Tr (1975), Canonical structure in the ident. of multi-variable. Automatica, 11, pp. 361–398.CrossRefMATHMathSciNetGoogle Scholar
  15. Gupta, R.D., Fairman, F.W. (1974), Param. est. for multivariable systems.. AC, 19, pp. 546–549.MATHMathSciNetGoogle Scholar
  16. Gustaysson, I., Ljung, L., Söderström, T. (1976), Identification of pro-Google Scholar
  17. cesses in closed loop-identifiability and accuracy aspects. IFACSymposium, Tbilisi, paper S-3.Google Scholar
  18. Haber, R., Keviczky, L. (1976), Ident. of nonlinear syst. IFAC Symp. Tbilisi, pap. S-4.Google Scholar
  19. Hajdasinski, A.K., Niederlinski, A. (1979), Multivariable system identification, IFAC Symp. Darmstadt, FRG.Google Scholar
  20. Krebs, V., Thöm, H. (1974), Parameteridentifizierung nach der Methode der kleinsten Quadrate–ein Überblick. Regelungstechnik und Prozeßdatenverarb. 22, No. 1, pp. 1–32.Google Scholar
  21. Kreuzer, W. (1977), Parameteridentifikation bei linearen zeitinvarianten Systemen. Diss. Universität Karlsruhe.Google Scholar
  22. Kubrusly, L.S. (1977), Distributed parameter system identification, a survey. Int. J. Control, V. 26, pp. 509–535.CrossRefMathSciNetGoogle Scholar
  23. Ljung, L., Gustaysson, I., Söderström, T. (1974), Identification of linear multivariable systems operating under linear feedback control. IEEE Trans. AC-19, pp. 836–840.Google Scholar
  24. Ljung, L. (1976), Consistency of the LS ident. method. IEEE Tr. AC, 21, pp. 779–781.CrossRefMATHMathSciNetGoogle Scholar
  25. Mehra, R.K. (1970), ML ident. of aircraft param., JACC Atlanta, pp. 442–444.Google Scholar
  26. Mesarovic, M.D. (1960), The control of multivariable systems.Wiley, N.Y.Google Scholar
  27. Passeri. D.P., Herget, C.J. (1972), Param. ident. of a class of multiple input/output linear discrete-time systems. JACC Stanford, pp. 786–793.Google Scholar
  28. Phadke, M.S., Wu, S.M. (1974), Identification of multi-input, multi-output transfer function and noise model of a blast furnace from closed loop data, IEEE Trans. AC-19, pp. 944–951.Google Scholar
  29. Ruberti, R. (1976), Distributed parameter systems: modelling and identification, IFIP Working Conference, Rome, Italy.Google Scholar
  30. Schaufelberger, W. (1969), Modelladaptive Systeme, Diss. ETH Zürich.Google Scholar
  31. Schenk, R., Scheurer, H.G. (1976), Vergleich einiger moderner Parameter-schätzverfahren. Regelungstechnik 24, No. 1, pp. 11–19.MATHGoogle Scholar
  32. Schulz, G. (1975), ML Ident. mittels Kalman Filterung. DFVLR, Rep. 75–54.Google Scholar
  33. Schulze, H. (1971), Anwendung von Schätzverfahren für die Kenngrößen von Regelstrecken aufgrund von Messungen im geschlossenen Regelkreis. Regelungstechnik und Prozeßdatenverarbeitung, 19, No. 3, pp. 113–119.MATHGoogle Scholar
  34. Söderström, T., Gustaysson, I., Ljung, L. (1975), Identifiability conditions for linear systems operating in closed loop. Int. J. Control, 21, No. 2, pp. 243–255.CrossRefMATHGoogle Scholar
  35. Söderström, T. (1978), A theoretical analysis of recursive ident. methods. Autom., 14, pp. 231–244.CrossRefMATHGoogle Scholar
  36. Thöm, H., Krebs, V. (1975), Ident. im geschlossenen Regelkreis–Korrelationsanalyse oder Parameterschätzung. Regelungstechnik, 23, pp. 17–19.Google Scholar
  37. Wellstead, P.E., Edmunds, J.M. (1975), Least squares identification of closed-loop systems. Int. J. Control 21, pp. 689–699.CrossRefMATHGoogle Scholar
  38. Wellstead, P.E. (1976), The identification and parameter estimation of feedback systems. IFAC-Symposium, Tbilisi, paper 16. 1.Google Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • H. Unbehauen
    • 1
  1. 1.Ruhr-UniversitätBochumDeutschland

Personalised recommendations