The Nonlocal Continuum Theory of Lattice Defects

  • B. K. D. Gairola
Part of the International Centre for Mechanical Sciences book series (CISM, volume 268)


Crystal imperfections, like those of human beings, come in seemingly endless variety. However, not all are equally interesting or easy to deal with. In these lectures we restrict ourselves to the most important kinds such as point defects and dislocations. Their presence has a profound effect on the physical properties of the material. Examples of point defects are vacancies and interstitials which are point defects consisting of the absence of an atom or the presence of an extra atom (Fig. 1). Dislocations, on the other hand, are line defects consisting of, for instance, an extra plane of atoms ending inside the crystal (edge dislocation, Fig. 2).


Interaction Energy Green Function Burger Vector Lattice Defect Continuum Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rogula, D., Bull. Acad. Polon. Sci., Ser. Sci. Techn. 13, 7 (1965)Google Scholar
  2. 2.
    Krumhansl, J.A., in: Lattice Dynamics, Ed. R.F. Wallis, Pergamon Press, London, Oxford 1965 (p. 627 )CrossRefGoogle Scholar
  3. 3.
    Kröner, E. and B.K. Datta, Z. Phys. 196, 203 (1966)ADSCrossRefGoogle Scholar
  4. 4.
    Kunin, I.A., Prikl. Mat. Mekh. 30, 642 (1966)Google Scholar
  5. 5.
    Eringen, A.C. and D.G.B. Edelen, Internat. J. -ngng. Sci. 10, 233 (1972)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Shannon, C.E., Proc.. IRE, January 1949Google Scholar
  7. 7.
    Gairola, B.K.D., Arch. Mech. 28, 393 (1979)MathSciNetGoogle Scholar
  8. 8.
    Kotowski, R., Z. Phys. B 33, 321 (1979)Google Scholar
  9. 9.
    Kosilova, V.G., I.A. Kunin, and E.G. Sosnina, Fiz. Tverd. Tela, 10, 367 (1968)Google Scholar
  10. 10.
    Vdovin, V.E. and I.A. Kunin, Fiz. Tverd. Tela, 10, 375 (1968)Google Scholar
  11. 11.
    von der Lage, F.C. and H.A. Bethe, Phys. Rev. 71, 612, (1947)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Gairola, B.K.D., Nonlocal Theories of Material systems, Jablonna 1975, Ossolineum 1976Google Scholar
  13. 13.
    Hardy, J.R. and R. Bullough, Phil. Mag. 15, 237 (1967), ibid 16, 405 (1967)Google Scholar
  14. 14.
    Kröner, E., Z. Phys. 142, 463 (1955)ADSCrossRefMATHGoogle Scholar
  15. 15.
    Kunin, I.A., PMM 31, 889 (1967)MATHGoogle Scholar
  16. 16.
    Kröner, E., to be published in Journal of the Engineering Mechanics Division of American Society of Civil engineersGoogle Scholar
  17. 17.
    Dederichs, P.H. and R. Zeller, KFA-Jül-Report, al-877-FF, 1972Google Scholar
  18. 18.
    Kröner, E., Z. Phys. 139, 175 (1954), ibid 143, 374 (1955)Google Scholar
  19. 19.
    Kröner, E., Kontinuumstheorie der Versetzungen und Eigenspannungen. Ergeb. angew.,Math. 5 (1958)Google Scholar
  20. 20.
    Marguerre, K., ZAMM 35, 242 (1955)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Colonetti, G., Atti Acad. naz. Lincei Re 27 /2, 155 (1918)Google Scholar
  22. 22.
    Gairola, B.K.D., phys. stat. sol. (b) 85, 577 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    Dederichs., P.H. and Ç. Lehmann, Z. Phys. B 20, 155 (1975)Google Scholar

Copyright information

© Springer-Verlag Wien 1982

Authors and Affiliations

  • B. K. D. Gairola
    • 1
  1. 1.Institut für Theoretische und Angewandte PhysikStuttgart 80W-Germany

Personalised recommendations