Skip to main content

Defects in Crystalline Media

  • Chapter
  • 127 Accesses

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 268))

Abstract

Various theoretical methods of investigating the properties of defects in crystalline media will be explored in this chapter. In particular emphasis will be placed on methods based on discrete models using inter-atomic potentials and computer simulation. However these methods rely heavily on earlier techniques based on geometrical and continuum models, which are also described. All models of defects must of course be developed from an understanding of the properties of perfect crystals. Therefore in the present section some of the relevant basic definitions are summarised. The types of defect which can arise in crystals are then discussed in general terms and the main experimental techniques which have been used to provide information on defects are outlined. Subsequent sections deal with geometrical, continuum and discrete theories of defects and finally various relationships between the theories are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henry, N.F.M. and Lonsdale, K., Eds., International Tables for X-ray Crystallography, Vol. 1,Kynoch Press, Birmingham, 1952

    Google Scholar 

  2. Jaswon, M.A., Introduction to Mathematical Crystallography, Longmans, London, 1965.

    MATH  Google Scholar 

  3. Nye, J.F., Physical Properties of Crystals, Clarendon, Oxford, 1957.

    MATH  Google Scholar 

  4. Bilby, B.A. and Crocker, A.G., The theory of the crystallography of deformantion twinning, Proc. Roy. Soc., Lond., A288, 240, 1965.

    Article  ADS  Google Scholar 

  5. Hull, D., Introduction to Dislocations, Second edition, Pergamon, Oxford, 1975.

    Google Scholar 

  6. Weertman, J. and Weertman, J.R., Elementary Dislocation Theory, Macmillan, New York, 1964.

    Google Scholar 

  7. Hirth, J.P. and Lothe, J., Theory of Dislocations, McGraw-Hill, New York, 1968.

    Google Scholar 

  8. Nabarro, F.R.N., Theory of Crystal Dislocations, Clarendon, Oxford 1967.

    Google Scholar 

  9. Amelinckx, S., The Direct Observation of Dislocations, Academic Press, New York, 1964.

    MATH  Google Scholar 

  10. Crocker, A.G., Configurations of close-packed cluster of substitutional point defects in crystals, Phil. Mag., 32, 379, 1975.

    Article  ADS  Google Scholar 

  11. Crocker, A.G., Close packed clusters of five substitutional point defects in cubic crystals, Crystal Lattice Defects, 7, 239, 1978.

    Google Scholar 

  12. Crocker, A.G. and Faridi, B.A., Enumeration of migration, growth and contraction mechanisms for close-packed clusters of vacancies in fcc crystals, J. Nuclear Materials, 69–70, 671, 1978.

    Google Scholar 

  13. Malik, A.Q., Close packed clusters of point defects in nuclear materials, M.Sc. thesis, University of Surrey, Guildford, 1980.

    Google Scholar 

  14. Akhtar, J.I., Malik, A.Q. and Crocker, A.G., Enumeration of migration, growth and contraction mechanisms for clusters of vacancies and solutes in cubic crystals, in preparation.

    Google Scholar 

  15. Bilby, B.A., A rule for determining the displacements caused by the motion of a dislocation line, Research, 4, 387, 1951.

    Google Scholar 

  16. Bilby, B.A., Bullough, R. and Smith, E., Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, Proc. Roy. Soc. Lond., A231, 263, 1955.

    Article  ADS  MathSciNet  Google Scholar 

  17. Christian, J.W., The Theory of Transformations in Metals and Alloys, Second edition Part I, Pergamon, Oxford, 1975.

    Google Scholar 

  18. Christian, J.W. and Crocker, A.G., Dislocations and Lattice Transformations, in Dislocations in Solids, Vol. 3, Moving Dislocations, Nabarro, F.R.N., Ed., North Holland, Amsterdam, 1980, 165.

    Google Scholar 

  19. Crocker, A.G. and Flewitt, P.E.J., The migration of interphase boundaries by shear mechanisms, in Interphase Boundaries in Solids,Smith D.A. and Chadwick, G.A., Eds., Academic Press, London, in the press.

    Google Scholar 

  20. Bollmann, W., Crystal Defects and Crystalline Interfaces, Springer, Berlin, 1970.

    Book  Google Scholar 

  21. Bevis, M. and Crocker, A.G., Twinning shears in lattices, Proc. Roy. Soc. Lond., A304, 123, 1968.

    Article  ADS  Google Scholar 

  22. Bevis, M. and Crocker, A.G., Twinning modes in lattices, Proc. Roy. Soc. Lond., A313, 509, 1969.

    Article  ADS  Google Scholar 

  23. Crocker, A.G., The crystallography of deformation twinning in alpha-uranium, J. Nuclear Materials, 16, 306, 1965.

    Article  ADS  Google Scholar 

  24. Crocker, A.G. and Bevis, M., The crystallography of deformation twinning in titanium, in The Science, Technology and Application of Titanium, Jaffe R. and Promisel N. Eds., Pergamon, Oxford, 1970, 453.

    Chapter  Google Scholar 

  25. Crocker, A.G., The crystallography of deformation twinning in alpha plutonium, J. Nuclear Materials, 41, 167, 1971.

    Article  ADS  Google Scholar 

  26. Rechtien, J.J., Crocker, A.G. and Nelson, R.D., Twinning in alpha-neptunium, J. Nuclear Materials, 40, 134, 1971.

    Article  ADS  Google Scholar 

  27. Acton, A.F., Bevis, M., Crocker, A.G. and Ross, N.D.H., Transformation strains in lattices, Proc. Roy. Soc. Lond., A320, 101, 1970.

    Article  ADS  Google Scholar 

  28. Crocker, A.G. and Singleton, G.A.A.M., The orientation dependence of the elastic moduli of crystalline mercury, Phys. Stat. Solidi (a), 6, 635, 1971.

    Article  ADS  Google Scholar 

  29. Singleton, G.A.A.M. and Crocker, A.G., The elastic energies of slip dislocations in crystalline mercury, Phys. Stat. Solidi (a), 6, 645, 1971.

    Article  ADS  Google Scholar 

  30. Tucker, M.O. and Crocker, A.G., The plane boundary in anisotropie elasticity, in Mechanics of Generalized Continua, Kröner, E., Ed., Springer, Berlin, 1968, 286.

    Chapter  Google Scholar 

  31. Bacon, D.J., Barnett, D.M. and Scattergood, R.O., Anisotropie Continua Theory of Lattice Defects, Prog. Mat. Sei., 23, 51, 1979.

    Article  ADS  Google Scholar 

  32. Crocker, A.G. and Bacon, D.J., Elastic self-energies of undissociated dislocation jogs, Phil. Mag., 15, 1155, 1967.

    Article  ADS  Google Scholar 

  33. Heald, P.T., Discrete lattice models of point defects, in Vacancies ‘76, The Metals Society, London, 1977.

    Google Scholar 

  34. Kroner, E., Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer, Berlin, 1958.

    Book  Google Scholar 

  35. Bilby, B.A., Continuous distributions of dislocations, Prog. Solid Mechanics, 1, 331, 1960.

    Google Scholar 

  36. Datta Gairola, B.K. and Kröner, E., The nonlocal theory of elasticity and its application to interaction of point defects, in Nonlocal Theories of Material Systems, Polish Academy of Sciences, Warsaw, 1976, 5.

    Google Scholar 

  37. Rogula, D., Nonlocal models in elasticity, in Nonlocal Theories of Material Systems, Polish Academy of Sciences, Warsaw, 1976, 81.

    Google Scholar 

  38. Johnson, R.A., Interstitials and vacancies in:a-iron, Phys. Rev.,134A, 1329, 1964.

    Google Scholar 

  39. Crocker, A.G. and Bristowe, P.D., In-plane translations at crystalline interfaces, Arch. Mech., 31, 3, 1979.

    Google Scholar 

  40. Crocker, A.G., Doneghan, M., and Ingle, K.W., The structure of small vacancy clusters in face-centred-cubic metals, Phil. Mag. A, 41, 21, 1980.

    Article  ADS  Google Scholar 

  41. Bristowe, P.D. and Crocker, A.G., A computer simulation study of the structures of twin boundaries in body-centred cubic crystals, Phil. Mag., 31, 503, 1975.

    Article  ADS  Google Scholar 

  42. Fletcher, R. and Reeves, C.M., Function minimization by conjugate gradients, Comp. J., 7, 149, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  43. Ingle, K.W. and Crocker, A.G., A computer simulation study of the effect of applied stress on divacancy binding energies in body-centred cubic crystals, Phys. Stat. Solidi (a), 38, 523, 1976.

    Article  ADS  Google Scholar 

  44. Ingle, K.W. and Crocker, A.G., A computer simulation study of the migration of vacancies and divacancies in stressed body centred cubic metals, J. Nuclear Materials, 69–70, 667, 1978.

    Article  ADS  Google Scholar 

  45. Crocker, A.G., Computer simulation of vacancy clusters in facecentred-cubic metals, in Interatomic Potentials and Crystalline Defects, Lee, J.K., Ed. TMS-AIME, Warrendale, 1981.

    Google Scholar 

  46. Bristowe, P.D. and Crocker, A.G., A computer simulation study of the structure of twinning dislocations in body-centred cubic metals, Acta Metall., 25, 1363, 1977.

    Article  Google Scholar 

  47. Ingle, K.W. and Crocker, A.G., The interaction between vacancies and the z 111 {110} edge dislocation in body centred cubic metals, Acta Metall., 26, 1461, 1978.

    Article  Google Scholar 

  48. Miller, K.M., Ingle, K.W. and Crocker, A.G., A computer simulation study of pipe diffusion in body centred cubic metals, Acta Metall., 29, 1599, 1981.

    Article  Google Scholar 

  49. Crocker, A.G. and Faridi, B.A., Plane coalescence at grain boundaries, Acta Metall., 28, 549, 1980.

    Article  Google Scholar 

  50. Bristowe, P.D. and Crocker, A.G., The structure of high-angle (001) CSL twist boundaries in f.c.c. metals, Phil. Mag. A, 38, 487, 1978.

    Article  ADS  Google Scholar 

  51. Ingle, K.W. and Crocker, A.G., On the structure of high-angle (110) CSL twist boundaries in f.c.c. metals, Phil. Mag. A, 41, 713, 1980.

    Article  ADS  Google Scholar 

  52. Ingle, K.W., Bristowe, P.D. and Crocker, A.G., A computer simulation study of the interaction of vacancies with twin boundaries in body-centred cubic metals, Phil. Mag. 33, 663, 1976.

    Article  ADS  Google Scholar 

  53. Ingle, K.W. and Crocker, A.G., Migration of vacancies near twin boundaries in body-centred-cubic metals, Phil. Mag. A, 37, 297, 1978.

    Article  ADS  Google Scholar 

  54. Faridi, B.A. and Crocker, A.G., Migration of vacancies near stacking faults in face-centred-cubic metals, Phil. Mag. A, 41, 137, 1980.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Wien

About this chapter

Cite this chapter

Crocker, A.G. (1982). Defects in Crystalline Media. In: Rogula, D. (eds) Nonlocal Theory of Material Media. International Centre for Mechanical Sciences, vol 268. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2890-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2890-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81632-5

  • Online ISBN: 978-3-7091-2890-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics