Self — Alignment of Inertial Platforms

  • Peter Chr. Müller
Part of the International Centre for Mechanical Sciences book series (CISM, volume 63)


The performance accuracy of an inertial guidance system can be only as good as the accuracy with which the system is initially aligned. For the usual latitude-longitude coordinate system for terrestrial guidance, an error of the initial alignment of the stable platform produces errors in the system’s report of distance travelled which vary sinusoidally round about a displaced mean value, as shown in section 6 of chapter 3. This indicates that an important initial condition for an inertial system is the initial platform orientation.


Inertial Guidance System Inertial System Complete Observability Inertial Platform Attitude Reference System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. MAGNUS: Kreisel, Theorie und Anwendungen. Springer-Verlag, Berlin - Heidelberg - New York 1971.MATHGoogle Scholar
  2. [2]
    G.R. PITMAN, JR. (editor): Inertial Guidance. John Wiley & Sons, New York - London 1962.MATHGoogle Scholar
  3. [3]
    C.F. O’DONNELL (editor): Inertial Navigation Analysis and Design. McGraw-Hill, New York - San Francisco - Toronto - London 1964.Google Scholar
  4. [4]
    R.H. CANNON, JR.: Alignment of Inertial Guidance Systems by Gyrocompassing–Linear Theory. J. Aerospace Sci. 28 (1961) pp. 885–895, 912.MathSciNetGoogle Scholar
  5. [5]
    C.S. BRIDGE: Alinement and Long Time Error Propagation of Inertial Systems. J.–buch Wiss. Ges. Luft-u. Raumfahrt 1963, pp. 211–218.Google Scholar
  6. [6]
    U. KROGMANN: Die selbsttätige Ausrichtung einer Trägheits plattform vor dem Start. Luftfahrttechnik–Raumfahrttechnik 11 (1965) pp. 185–189.Google Scholar
  7. [7]
    J.T. KOUBA, L.W. MASON, JR.: Gyrocompass Alignement of an Inertial Platform to Arbitrary Attitudes. ARS J. 32 (1962) pp. 1029–1033.CrossRefGoogle Scholar
  8. [8]
    P.C. MÜLLER: Schnelligkeitsoptimales Ausrichten von Trägheitsplattformen. Ing.-Arch. 40 (1971) pp. 248–265.CrossRefGoogle Scholar
  9. [9]
    R.E. KALMAN, P.L. FALB, M.A. ARBIB: Topics in Mathematical System Theory. McGraw-Hill, New York 1969.MATHGoogle Scholar
  10. [10]
    D.G. LUENBERGER: Observers for Multivariable Systems. IEEE Transact. on Automatic Control Vol-AC 11 (1966) pp. 190–197.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1972

Authors and Affiliations

  • Peter Chr. Müller
    • 1
  1. 1.Technical University of MunichGermany

Personalised recommendations