Cyclic Codes

  • N. J. A. Sloane
Part of the International Centre for Mechanical Sciences book series (CISM, volume 188)


Cyclic codes are the most studied of all codes. After giving some of the general theory in the first few sections, we proceed with a brief description of the Hamming, BCH, Reed-Solomon, and Justesen codes, with a digression on perfect codes.


Parity Check Cyclic Code Parity Check Matrix Cyclic Shift Perfect Code 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [90]
    Apple, G.G., Jr. (197), High Speed Double Error Correcting BCH Decoder, to appear.Google Scholar
  2. [91]
    Bose, R.C. and D.K. Ray-Chaudhuri (1960), On a Class of Error-Correcting Binary Group Codes, IC 3:68–79 and 279–290.Google Scholar
  3. [92]
    Burton, H.O. (1971A), Inversionless Decoding of Binary BCH Codes, PGIT 17: 464–466.Google Scholar
  4. [93]
    Cowless, J.W. and G.I. Davida (1972), Decoding of Triple-Error-Correcting BCH Codes, Electronics Letters, 8 (Nov’ 16).Google Scholar
  5. [94]
    Davida, G.I. (1971), Decoding of BCH Codes, Electronics Letters 7: 664.CrossRefMathSciNetGoogle Scholar
  6. [95]
    Elias, P. (1954), Error-Free Coding, PGIT 4:29–37Google Scholar
  7. [96]
    Golomb, S.W. (1967), Shift. Register Sequences, Holden-Day, San Francisco.Google Scholar
  8. [97]
    Hocquenghem, A. (1959), Codes Correcteurs d’Erreurs, Chiffres 2: 147–156.MATHMathSciNetGoogle Scholar
  9. [98]
    Van Lint, J.H. (197), A Survey of Perfect Codes, Rocky Mntn. J. Math., to appear.Google Scholar
  10. [99]
    Lytle, F.E. (1972), Hamming Type Codes Applied to Learning Machine Determinations of Molecular Formulas, Analytical Chemistry 44: 1867–1869.CrossRefGoogle Scholar
  11. [100]
    MacWilliams, F.J.. (1964) Permutation Decoding of Systematic Codes, BSTJ 43: 485–505.MATHGoogle Scholar
  12. [101]
    Massey, J. L. (1969), Shift-Register Synthesis and BCH Decoding, PGIT 15: 122–127.MATHMathSciNetGoogle Scholar
  13. [102]
    Paley, R.E.A.C. (1933), On Orthogonal Matrices, J. Math. Phys. 12: 311–320.Google Scholar
  14. [103]
    Polkinghorn, F., Jr. (1966), Decoding of Double and Triple Error Correcting Bose-Chaudhuri Codes, PGIT 12: 480–481.Google Scholar
  15. [104]
    Reed, I.S. and G. Solomon (1960), Polynomial Codes Over Certain Finite Fields, SIAMJ 8: 300–304.MATHMathSciNetGoogle Scholar
  16. [105]
    Sloane, N.J.A. (1972a), Dense Sphere Packings Constructed from Error-Correcting Codes, Mathematika 10: 183–190.CrossRefMathSciNetGoogle Scholar
  17. [106]
    Sloane, N.J.A. and J.J. Seidel (1970), A New Family of Nonlinear Codes Obtained from Conference Matrices, Annals N.Y. Sciences 175: 363–365.MATHMathSciNetGoogle Scholar
  18. [107]
    Sloane, N.J.A. and D.S. Whitehead (1970), New Family of Single-Error Correcting Codes, PGIT 16: 717–719.MATHMathSciNetGoogle Scholar
  19. [108]
    Sullivan, D.D. (1972), A Branching Control Circuit for Berlekamp’s BCH Decoding Algorithm, PGIT 18: 690–692.MATHGoogle Scholar
  20. [109]
    Tietäväinen, A. (1970), On the Nonexistence of Perfect 4-HammingCorrecting Codes, Ann. Acad.Sci. Fenn., Ser. AI 485: 3–6.Google Scholar
  21. [110]
    Tietäväinen, A. (1973), On the Nonexistence of Perfect Codes Over Finite Fields, SIAMJ 24: 88–96.MATHGoogle Scholar
  22. [111]
    ]Tietäväinen., A. and A.Perko (1971), There are No Unknown Perfect Binary Codes, Ann. Univ. Turku., Ser. AI 148: 3–10.Google Scholar
  23. [112]
    Tzeng, K.K. and K. Zimmerman (1972), On Full Power Decoding of Cyclic Codes, Proceeding Princeton Conference on Information Sciences and Systems, 1972, pp. 404–407.Google Scholar
  24. [113]
    Vasil’ev, J.L. (1962), On Nongroup Close-Packed Codes, Prob. Cybernetics, 8: 337–339.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • N. J. A. Sloane
    • 1
  1. 1.Bell LaboratoriesNew JerseyUSA

Personalised recommendations