Statistical theory of elastic materials with heterogeneous constitution

  • Ekkehart Kröner
Part of the International Centre for Mechanical Sciences book series (CISM, volume 92)


Many materials which appear to be homogeneous on a macroscopic scale turn out to be of a heterogeneous constitution on a much smaller scale to which we refer as the microscopic scale. Polycristalline aggregates as well as mixtures of several phases or materials belong to materials of this kind. These so-called composites have found increasing attention in recent time, both from the experimental and from the theoretical side.


Correlation Function Statistical Theory Elastic Material Elastic Modulo Versus Versus Versus Versus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.J. Reran, Statistical Continuum Theories, Interscience Publish ers, New York 1968.Google Scholar
  2. Statistical Problems of the Mechanics of Deformable Solids, Acad. Sciences, Moscow 1970 (in Russian).Google Scholar
  3. V.A. Lomakin, I.M. Lifshitz and L.N. Rosentsveig, Zh. Eksp. Teor. Phys. 16, 967 (1946).Google Scholar
  4. M. Beran and J. Molyneux, Nuovo Cimento 30, 1406 (1963)CrossRefMathSciNetGoogle Scholar
  5. M. Beran, Nuovo Cimento Suppl. 3, 448 (1965)Google Scholar
  6. M. Beran and J. Molyneux, Quart. Appl. Math. 24, 107 (1966)MATHGoogle Scholar
  7. V.A. Lomakin, Sov. Phys. Dokl. 2, 282 (1964)Google Scholar
  8. V.A. Lomakin, J. Appl. Math. Mech. (Transi, from Russian) 29, 1048 (1965)Google Scholar
  9. V.A. Lomakin, Mechanica Polymerov (Riga) 2, 213 (1967)CrossRefGoogle Scholar
  10. S.D. Volkov and N.A. Klinskikh, Physics Metals, Metallogr. (Transi. from Russian) 19, 24 (1965)Google Scholar
  11. E. Kröner, J. Mech. Phys. Solids 15, 319 (1967)CrossRefMATHGoogle Scholar
  12. K. — H. Reichstein, Zur Statistischen Theorie der Effektiven Dielektrizitätskonstanten Vielkristalliner Stoffe. Dissertation Clausthal. Germany. 1968Google Scholar
  13. M.J. Beran and J.J. McCoy, Int. J. Solids Structures 6, 1035, 1267 (1970)CrossRefMATHGoogle Scholar
  14. V.V. Bolotin and V.N. Moskalenko, Sov. Phys. Dokl. 13, 73 (1968)Google Scholar
  15. V.V. Bolotin and V.N. Moskalenko, Mech. Twed. Tela 106 (1969).Google Scholar
  16. W.M. Lewin, Prikl. Mat. Mech. 35, 744 (1971).Google Scholar
  17. P. Mazilu, Rev. Roum. Math. Pur. Appl. 11, 261 (1972).Google Scholar
  18. P.H. Dederichs and R. Zeller, KEA—Jill—Report, J151l-877—FF (1972) available at Central Library of KFA Jílich, Germany or from the authors (in German).Google Scholar
  19. R. Zeller and P.H. Dederichs, phys. stat. sol. (b) 1973, in press.Google Scholar
  20. W. Voigt, Abh. Gött. Akad. Wiss. 1887, p. 48Google Scholar
  21. A. Reuss, Z.Angew Math. Mech. 2, 49 (1929)Google Scholar
  22. J.F.W. Bishop and R. Hill, Phil. Mag. 42, 414, 1298 (1951)MATHMathSciNetGoogle Scholar
  23. R. Hill, Proc. Phys. Soc. A 65, 349 (1952)Google Scholar
  24. G. Bradfield and H. Pursey, Phil. Mag. 44, 437 (1953)Google Scholar
  25. A.V. Hershey, J. Appl. Mech. 21, 236 (1954)MATHGoogle Scholar
  26. E. Kröner, Z. Phys. 151, 504 (1958)Google Scholar
  27. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 10, 343 (1962)CrossRefMathSciNetGoogle Scholar
  28. Z. Hashin, Appl. Mech. Rev. 1, 1 (1964) (Review)Google Scholar
  29. R. Hill, J. Mech. Phys. Solids 13, 213 (1965)CrossRefGoogle Scholar
  30. B. Budiansky, J. Mech. Phys. Solids 13, 223 (1965)CrossRefGoogle Scholar
  31. G. Kneer, Phys. Stat. Sol. 9, 825 (1965)Google Scholar
  32. L. Anderson, Physical Acoustics, Vol. III, Part B, W.P. Mason Ed., Academic Press, New York — London 1965Google Scholar
  33. P.R. Morris, Int. J. Eng. Sciences 8, 49 (1970)CrossRefGoogle Scholar
  34. H.H. Wawra, Z. Metallkunde 1970Google Scholar
  35. L. Thomsen, J. Geophys. Res., 7, 315 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1971

Authors and Affiliations

  • Ekkehart Kröner
    • 1
  1. 1.University of StuttgartGermany

Personalised recommendations