• Antoni K. Oppenheim
  • Mostafa M. Kamel
Part of the International Centre for Mechanical Sciences book series (CISM, volume 100)


High-speed cinematography is a basic research tool of fundamental importance to the study of a vast variety of transient phenomena occurring in many branches of science. For the present purpose, this will be understood to imply framing rates in excess of 10 kHz and exposure times of less than 1 microsecond. In such a regime of operating conditions, highspeed framing cameras, although available, become extremely cumbersome, have limited application, and are expensive. A simpler approach, which utilizes a pulsed light source to determine both exposure duration and framing rate, is generally preferable. In this case, the camera serves only as a means of displacing successive images over the film at a rate sufficient to avoid image overlap.


Laser Cavity Pulse Control Ruby Laser Giant Pulse Laser Cinematography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    McClung, F.J., and R.W. Hellwarth, “Giant Optical Pulsations from Ruby”, J. Appl. Phys., 33, 828–829, 1962.ADSCrossRefGoogle Scholar
  2. [2]
    Ellis, A.T. and M.E. Fourney, “Applications of a Ruby Laser to High-Speed Photography”, Proc. Inst. Electron. Engrs., 51, 941–942, 1963.Google Scholar
  3. [31.
    Schawlow, A.L. and C.H. Townes, “Infracted and Optical Masers”, Phys. Rev. 112, 1940–1949, 1958.ADSCrossRefGoogle Scholar
  4. [4]
    Maiman, T.H., “Stimulated Optical Emission in Fluorescent Solids”, Phys. Rev., 123, 1145–1150, 1961.ADSCrossRefGoogle Scholar
  5. [5]
    Hellwarth, R.W., “Control of Fluorescent Pulsations”, Advances in Quantum Electronics, Columbia University Press, New-York, pp. 334–341, 1961.Google Scholar
  6. [6]
    Collins, R.J. and Kisliuk, P., “Control of Population Inversion in Pulsed Optical Masers by Feedback Modulation, J. Appl. Phys., 33, 2009–2011, 1962.ADSCrossRefGoogle Scholar
  7. [7]
    Dunnington, F.G., “The Electrooptical Shutter–Its Theory and Technique”, Phys. Rev., 38, 1506–1534, 1931.ADSCrossRefMATHGoogle Scholar
  8. [8]
    Jenkins, F.A. and White, H:E., Fundamentals of Optics, McGraw-Hill Book Company, Inc., New-York, 637 PP.Google Scholar
  9. [9]
    Kingsbury, E.F., “The Kerr Electrostatic Effect”, Rev. Sci. Instrum., 1, 22–32, 1930.ADSCrossRefGoogle Scholar
  10. [10]
    Zarem, A.M., Marshall, F.R. and Hauser, S.M., “Millimicro second Kerr Cell Camera Shutter”, Rev. Sci. Instrum., 29, 1041–1044, 1958.ADSCrossRefGoogle Scholar
  11. [11]
    Pockels, F.C.A., Einfluss des Elektrostatischen Feldes aut das Optische Verhalten Piezo-elektrischer Krystalle (Preisschrift) Akademie der Wissenschaften Gottingen, Abbandlungen der Gesellschaft, 39, 204 pp., 1894.Google Scholar
  12. [12]
    Pockels, F.C.A., Lehrbuch der Krystaloptik, B.G. Teubner, Leipzig und Berlin, 1906.Google Scholar
  13. [13]
    Billings, B.H., “The Electro-Optic Effect in Uniaxial Crystals of the Type XH PO, I. Theoretical”, J. Opt. soc. Am., 39, 7 7–01, 1949.Google Scholar
  14. [14]
    Sorokin, P.P., Luzzi, J.J., Lankard, J.R. and Pettit, G.D., “Ruby Laser Q-Switching Elements Using Phthalocyanine Molecules in Solution”, IBM Journal of Res. and Dev., 8, 182–184, 1964.CrossRefGoogle Scholar
  15. [15]
    Smith, W.V. and Sorokin, P.P., The Laser, McGraw-Hill Book Co., Inc., New-York, 1966, 498 pp.Google Scholar
  16. [16]
    Soffer, B.H., “Giant Pulse Laser Operation by a Passive, Reversibly Bleachable Absorber”, J. Appl. Phys, 35, 2551, 1964.ADSCrossRefGoogle Scholar
  17. [17]
    Kafalas, P., Masters, J.I. and Murray, E.M.E., “Photosensitive Liquid Used as a Nondestructive Passive Q-switch in a Ruby Laser”, J. Appl. Phys., 35, 2349–2350, 1964.ADSCrossRefGoogle Scholar
  18. [18]
    Stark, T.E., Cross, L.A. and Hobart, J.L., “Saturable Filter Investigation”, a Technical Report prepared for ONR, Feb. 19, 1964, under Contract No. Nonr-4125 (00), NR015–702.Google Scholar
  19. [19]
    Cross, L.A. and Cheng, C.K., “Generation of Giant Pulses from a Neodymium Laser with an Organic-Dye Saturable Filter”, J. Appl. Phys., 38, 5, 2290–2294, 1967.ADSCrossRefGoogle Scholar
  20. [20]
    Lo, C.C., “A 2-M H2 8-KV Pulser for High-Speed Stroboscopic Photography”, Lawrence Radiation Laboratory, UCRL-19248, University of California, Berkeley, 1969, 17 pp.Google Scholar
  21. [21]
    Miller, Harold W. and Kerns, Q.A., “Transistors for Avalanche Mode Operation”, Rev. Sci. Intr., 33 877–878, 1962.ADSCrossRefGoogle Scholar
  22. [22]
    Lo, C.C., “1-kHz Spark Gap Trigger Amplifier”, Lawrence Radiation Laboratory - Berkeley, Engineering Note EET-1303, March 1969.Google Scholar

Copyright information

© Springer-Verlag Wien 1971

Authors and Affiliations

  • Antoni K. Oppenheim
    • 1
  • Mostafa M. Kamel
    • 1
  1. 1.University of CaliforniaUSA

Personalised recommendations