• Antoni K. Oppenheim
  • Mostafa M. Kamel
Part of the International Centre for Mechanical Sciences book series (CISM, volume 100)


As it is well known today, the advent of lasers revolutionalized the scientific optical recording technology. The most popular in this respect is holography — a technique made pratically possible as a consequence of the appreciable coherence length of the laser light [1] (*). It is of interest to note, however, that such exploitation of the advantages accrued by the use of lasers as light sources is by no means associated with the introduction of new principles. The fundamentals of holography, for instance, have been laid down by Gabor [2] long before laser was discovered. Thus the real nature of the revolution brought about by the use of lasers as light sources for optical observations is associated primarily with the improvements they introduced to experimental techniques whose basic features were known before.


Test Section Parallel Beam Knife Edge Test Space Laser Light Source 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Stroke, G.W., An introduction to Coherent Optics and Holography, 270 pp., Academic Press, New-York, 1966.Google Scholar
  2. [2]
    Gabor, D., “Microscopy by Reconstructed Wave-Fronts”, Proc. Roy. Soc., A197, 454–487, 1949.ADSCrossRefGoogle Scholar
  3. [3]
    Weinberg, F.J., “A Versatile Apparatus for the Study of Refractive Index Fields in Gases”, ARL 63–45, Wright-Patterson AFB, Ohio, February 1963.Google Scholar
  4. [4]
    Oppenheim, A.K., Urtiew, P.A. and Weinberg, F.J., “On the Use of Laser Light Sources in Schlieren-Interferometer Systems”, Proc. Roy. Soc., A291, 279–290, 1966.Google Scholar
  5. [5]
    Heflinger, L.O., Wuerker, R.F. and Brooks, R.E., “Holograph is Interferometry”, J. Appl. Phys., 37, 2, 642–649, February 1966.ADSCrossRefGoogle Scholar
  6. [6]
    Brooks, R. E., Heflinger, L.O. and Wuerker, R.F., “9A9—Pulsed Laser Holograms”, IEEE J. of Quantum Elect. QE-2, 8, 275–279, August 1966.ADSCrossRefGoogle Scholar
  7. [7]
    Tanner, L.H., “Some Laser Interferometers for Use in Fluid Mechanics”, J. Sci. Instru., 42, 834–837, December 1965.ADSCrossRefGoogle Scholar
  8. [8]
    Tanner, L.H., “Some Applications of Holography in Fluid Mechanics”, T. Sci. Instru., 43, 81–83, February 1966.ADSCrossRefGoogle Scholar
  9. [9]
    Tanner, L.H., “The Application of Lasers to Time-Resolved Flow Visualization”, J. Sci. Instru., 43, 353–358, June 1966.ADSCrossRefGoogle Scholar
  10. [10]
    Tanner, L.H., “The Design of Laser Interferometers for Use in Fluid Mechanics”, J. Sci. Instru., 43, 878–886, December 1966.ADSCrossRefGoogle Scholar
  11. [11]
    Gates, J.W.C., “Holography with Scatter Plates”, J. Sci. Instru., Series 2, 1, 2, 1968.Google Scholar
  12. [12]
    Weinberg, F.J., Optics of Flames, 251 pp. ( Butterworths, Washington, D.C. ) 1963.Google Scholar
  13. [13]
    Shafer, H.J., “Physical Optics Analysis of Image Quality in Schlieren Photography”, J. Soc. Motion Picture Engrs., 53, p. 524, 1949.Google Scholar
  14. [14]
    Lord Rayleigh, “On Methods for Detecting Small Optical Retardations and on the Theory of Foucaults Test”, Sci. Pap., Cambridge University Press, 6, p. 455, 1920.Google Scholar
  15. [15]
    Speak, G.S. and Walters, D.J., “Optical Considerations and Limitations of the Schlieren Method”, Aeronautical Research Council, Rpt. & Memo; 2859, 1954.Google Scholar
  16. [16]
    Linfoot, E.H., “A Contribution to the Theory of the Foucault Test”, Proc. Roy. Soc., A186, p. 72, 1946.Google Scholar
  17. [17]
    Schardin, H., “Die Schlierenverfahren und Ihre Anwendungen”, Ergebn. Exakt. Naturw., 20, p. 303, 1942.CrossRefGoogle Scholar
  18. [18]
    Ellis, O.C. de C. and Morgan, E. “The Vibratory Movement in Flames”, Trans. Faraday Soc. 28, p. 826, 1932.CrossRefGoogle Scholar
  19. Ellis, O.C. de C. and Morgan, E. “The Temperature Gradient in Flames”, Trans. Faraday Soc., 30, p. 287, 1934.CrossRefGoogle Scholar
  20. [19]
    Burgoyne, J.H. and Weinberg, F.J., “Studies of the Mechanism of Flame Propagation in Premixed Gases”, Z. Elektrochem. (Bunsengesellschaft Symposium) 61, p. 565, 1967.Google Scholar
  21. [20]
    Reck, J., Sumi, K. and Weinberg, F.J., “An Optical Method of Flame Temperature Measurement, II–Sensitivi ty and Application”, Fuel, 35, P. 364, 1956.Google Scholar
  22. [21]
    Ronchi, V., La Prova dei Sistemi Ottici, Zanichelli, Bologna, 1925.MATHGoogle Scholar
  23. [22]
    Levy, A. and Weinberg, F.J., “Optical Flame Structure Studies: Examination of Reaction Rate Laws in Lean Ethylene Air Flames”, Combustion and Flame, 3, p. 229, 1959.CrossRefGoogle Scholar
  24. [23]
    Levy, A. and Weinberg, F.J., “Optical Flame Structure Studies: Some Conclusions Concerning the Propagation of Flat Flames”, VII Symposium (International) on Combustion, p. 296, Butterworths, London, 1959.Google Scholar
  25. [24]
    Wolter, H., „Schlieren-Phasenkontrast-und Lichtschnittverfahren”, Handb. Phys., 24, p. 555, 1956.ADSGoogle Scholar
  26. [25]
    Pandya, T.P. and Weinberg, F.J., “The Study of the Structure of Laminar Diffusion Flames by Optical Methods”, IX Symposium (International) on Combustion, p. 587, Academic Press, New York, 1963.Google Scholar
  27. [26]
    Hannes, H., “The Properties of Shadowgraphs”, Optik, Stuttgart, 13, P. 34, 1956.Google Scholar
  28. [27]
    Kraushaar, R., “A Diffraction Grating Interferometer”, J. Opt. Soc. Amer., 40, P. 480, 1950.CrossRefGoogle Scholar
  29. [28]
    Sterrett, J.R. and Erwin, J.R., “Investigation of DifFraction Grating Interferometer for Use in Aerodynamic Research”, NACA Tech. Note 2827, 1952Google Scholar
  30. [29]
    Pandya, T.P. and Weinberg, F.J., “The Structure of Flat Counter-Flow Diffusion Flames”, Proc. Roy. Soc., A279, p. 544, 1964.Google Scholar
  31. [30]
    Schwar, M.J.R., and Weinberg, F.J., “Coherent Light Sources and Refractive Index Fields”, Phys. Bull., 21, 490–492, 1970.Google Scholar
  32. [31]
    Jones, A.R., Schwar, M.J.R. and Weinberg, F.J., “Generalizing Variable Shear Interferometry for the Study of Stationary and Moving Refractive Index Fields with the Use of Laser Light”, Proc. Roy. Soc., A322, 119–135, 1971.Google Scholar

Copyright information

© Springer-Verlag Wien 1971

Authors and Affiliations

  • Antoni K. Oppenheim
    • 1
  • Mostafa M. Kamel
    • 1
  1. 1.University of CaliforniaUSA

Personalised recommendations