Experimental Apparatus and Results

  • Antoni K. Oppenheim
  • Mostafa M. Kamel
Part of the International Centre for Mechanical Sciences book series (CISM, volume 100)


Laser oscillators, barely discovered a decade ago [1, 2] (*), can now be modulated by the use of Kerr or Póckels cells [3, 4] to yield stroboscopic light pulses of only several nanoseconds in half-width at a frequency of an order of a megacycle per second [5]. Such a light source can be used in conjunction with a rotating-mirror camera combined with schlieren optics [6, 7], a method that utilizes the fact that light is refracted by density gradients [8, 9], to obtain cinematographic records of explosion phenomena. The salient features of the apparatus are discribed in Fig. 1.1. The plane polarized light rays from the laser are expanded by a condenser lens and converted into an approximately 50 cm diameter beam of parallel light by means of the first schlieren lens or mirror. When the light beam passes through the test section, it is refracted by the density gradients associated with the gasdynamic flow field.


Shock Wave Detonation Wave Shock Tube Blast Wave Flame Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Schlow, A.L. and Tawnes, C.H. “Infrared and Optical Lasers”, Phys. Review, 112, pp. 1940–1949, 1958.ADSCrossRefGoogle Scholar
  2. [2]
    Maiman, T.H. “Stimulated Optical Radiation in Ruby”, Nature, 187, p. 493, 1960.ADSCrossRefGoogle Scholar
  3. [3]
    Maiman, T.H. “State of the Art Devices”, Optical Masers, (Fox, J. ed. ), Polytechnic Press of Polytechnic Institute of Brooklyn, N.Y., 1963.Google Scholar
  4. [4]
    Wagner, W.G., Lengyel B.A. “Evolution of the Giant Pulse in Laser”, J. Appl. Phys., 34, p. 2040, 1963.ADSCrossRefGoogle Scholar
  5. [5]
    Lo, C.C., “A2 — MH 8 — KV Pulser for High-Speed Strobo-scopic Photography”, Lawrence Radiation Laboratory, UCRL — 19248, University of California, Berkeley, 1969.Google Scholar
  6. [6]
    Oppenheim, A.K., Urtiew, P.A. and Weinberg, “On the Use of Laser Light Sources in Schlieren-Interferometer Systems”, Proc. Roy. Soc., A291, 279–290, 1966.ADSCrossRefGoogle Scholar
  7. [7]
    Hecht, G.J., Steel, G.B. and Oppenheim, A.K., “High-Speed Stroboscobic Photography Using a Kerr Cell Modulated Laser Light Source”, ISA Trans. Vol.5, N°2, pp. 133–138, April 1966.Google Scholar
  8. [8]
    Weinberg, F.J., Optics of Flames, 251 pp., Butterworths, London, 1963.Google Scholar
  9. [9]
    Soloukhin, R.I., Udarnye Volny i Detonatsia v Gazakh (Shock Waves and Detonation in Gases), 175 pp., Gos. Izd. Fiz. Mat. Literatury, Moscow, 1963; (Transl. by B.W. Kuvshinoff, Mono Book Corp., Baltimore, 1966); AMR, Vol. 18, 1965, Rev. 342.Google Scholar
  10. [10]
    Oppenheim, A.K., Introduction to Gasdynamics of Explosions, International Centre for Mechanical Sciences (CISM), Udine, Italy, 1971.Google Scholar
  11. [11]
    Smith, W.V. and Sorokin, P.P. The Laser, 498 pp., McGRawHill Book Co., N.Y., 1966.Google Scholar
  12. [12]
    Cross, L.A. and Cheng, C.K., “Generation of Giant Pulses from a Neodymium Laser with an Organic-Dye Saturable Filter”, J. Appl. Phys., Vol. 38, N°5, pp. 2290–2294, April 1967.ADSCrossRefGoogle Scholar
  13. [13]
    Skeen, C.H. and York, C.M., “The operation of a Neodymium Glass Laser Using a Saturable Liquid Q-Switch”, App. Opt., Vol. 5, N°9, pp. 1463–1464, 1966.CrossRefGoogle Scholar
  14. 114]
    Terhune, R.W., “Non-Linear Optics”, Bull. Am. Phys. Soc., Vol. 8, p. 359, 1963.Google Scholar
  15. [15]
    Tomlinson, R.G., “Gas Breakdown Criterion for Pulsed Optical Radiation”, Proc. of the IEEE, Vol. 52, N°6, pp. 721–722, 1964.CrossRefGoogle Scholar
  16. [16]
    Bebb, H.B. and Gold, A., “Multiphoton Ionization of Rare Gas and Hydrogen Atoms”, Phys. of Quantum Electronics, McGraw-Hill Book Co., N.Y., pp. 489–498, 1965.Google Scholar
  17. [17]
    Haught, A.F., Meyerand, R.G. Jr. and Smith, D.C., “Electrical Breakdown of Gases by Optical Frequency Radiation”, Phys. of Quant. Elec., McGraw-Hill Book Co., pp. 509–519, 1965.Google Scholar
  18. [18]
    Tomlinson, R.G., Damon, E.K. and Buscher, H.T., “Breakdown of Nobel and Atmospheric Gases by Ruby and Neodymium Laser Pulses”, Phys. Quant. Elect., McGraw-Hill Book, pp. 520–526, 1965.Google Scholar
  19. [19]
    Minck, R.W. and Rado, W.G., “Investigation of Optical Frequency Breakdown Phenomena”, Phys. Quant. Elec., McGraw-Hill Book Co., pp. 527–537, 1965.Google Scholar
  20. [20]
    Phelps, A.V., “Theory of Growth of Ionization During Laser Breakdown”, Phys. Quant. Elec., McGraw-Hill Book Co., pp. 538–547, 1965.Google Scholar
  21. [21]
    Peressini, E.R., “Field Emission from Atoms in Intense Optical Fields”, Phys. Quant. E.ec., McGraw-Hill Book Co., pp. 499–508, 1965.Google Scholar
  22. [22]
    Tomlinson, R.G., “Atmospheric Breakdown Limitations to Optical Maser Propagation”, Radio Science J. of Research, Vol. 69, pp. 1431–1433, 1965.Google Scholar
  23. [23]
    Meyerand, R.G. Jr, “Laser Plasma Production — A New Area of Plasmadynamics Research”, AIAA J., Vol. 5, N°10, pp. 1730–1737.Google Scholar
  24. [241.
    Lee, John H. and Knystautas, R., “Laser Spark Ignition of Chemically Reactive Gases”, AIAA J., Vol. 7, pp. 312–317, 1969.ADSCrossRefGoogle Scholar
  25. [25]
    Knystautas, R., “An Experimental Study of Spherical Gaseous Detonation Waves”, McGill University MERL, Report 69–2, Montreal, Canada, 1969.Google Scholar
  26. [26]
    Bach, J.J., Knystautas, R., and Lee, J.H., “Direct Initiation of Spherical Detonation in Gaseous Explosives”, Twelfth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 853–864, 1969.Google Scholar
  27. [27]
    Weinberg, F.J. and Wilson, J.R., “A Preliminary Investigation of the Use of Focoused Laser Beams for Minimum Ignition Energy Studies”, Proc. Roy. Soc. Lond., A321, pp. 41–52, 1971.ADSCrossRefGoogle Scholar
  28. [28]
    Ready, J.F., “Development of Plume of Material Vaporized by Giant Laser”, Appl. Phys. Letters, Vol. 3, N°1, p. 11, 1963.Google Scholar
  29. [29]
    Honig, R.E., “Laser-Induced Emission of Electrons and Positive Ions from Metals and Semi-Conductors”, Appl. Phys. Letters, Vol. 3, N°1, pp. 8–11, 1963.Google Scholar
  30. [30]
    Honig, R.E. and Woolston, J.R., “Laser-Induced Emission of Electrons, Ions, and Neutral Atoms from Solid Surfaces”, Appl. Phys. Letters, Vol. 2, N°7, pp. 138–139, 1962.Google Scholar
  31. [31]
    Oppenheim, A.K., Manson, N., and Wagner, H. Gg., “Recent Progress in Detonation Research”, AIAA Journal, Vol. 1, N°10, pp. 2243–2252, 1963.Google Scholar
  32. [32]
    Oppenheim, A.K., “Novel Insight into the Structure and Development of Detonation”, Astronautica Acta, Vol. 11, pp. 391–400, 1965.Google Scholar
  33. [33]
    Urtiew, P.A., and Oppenheim, A.K., “Detonative Ignition Induced by Shock Merging”, Eleventh Symposium (International) on Combustion, pp. 665–670, 1967.Google Scholar
  34. [34]
    Lee, J.H., Soloukhin, R.I., and Oppenheim, A.K., “Current Views on Gaseous Detonation”, Astronautica Acta, Vol. 14, pp. 565–584, 1969.Google Scholar
  35. [35]
    Lee, J.H., Lee, B.H.K., and Knystautas, R., “Direct Initiation of Cylindrical Gaseous Detonations”, Physics of Fluids, Vol. 9, pp. 221–222, 1966.ADSCrossRefGoogle Scholar
  36. [36]
    Lee, J.H., and Knystautas, R., “Laser Spark Ignition of Chemically Reactive Gases”, AIAA Journal, Vol. 7, N°2, pp. 312–317, 1969.Google Scholar
  37. [37]
    Sedov, L.I., Similarity and Dimensional Methods in Mechanics, (Moskow: Gastekhizdat) 4th ed., 1957, (English translation, ed. M. Holt, New York: Academic Press, XVI 363 pp., 1959 ).Google Scholar
  38. [38]
    Korobeinikov, V.P., and Chushkin, P.I., “Plane Cylindrical and Spherical Blast Waves in a Gas with Counter-Pressure”, Proc. V. A. Steklov Inst. of Math. (in “Non-Steady Motion of Compressible Media Associated with Blast Waves” edited by L.I. Sedov), pp. 4–33, Izdatel’stvo “Nauka”, Moscow, 1966 ).Google Scholar
  39. [39]
    Korobeinikov, V.P., Chushkin, P.I., and Sharovatova, K.V., “Gasdynamic Functions of Point Explosions”, Computer Center of the USSR Academy of Sciences, Moscow, 1969.Google Scholar

Copyright information

© Springer-Verlag Wien 1971

Authors and Affiliations

  • Antoni K. Oppenheim
    • 1
  • Mostafa M. Kamel
    • 1
  1. 1.University of CaliforniaUSA

Personalised recommendations