Application to Typical Blunt-Body Problems

  • Wlodzimierz Prosnak
Part of the International Centre for Mechanical Sciences book series (CISM, volume 41)


Hypersonic flows → aerodynamic heating.


Shock Wave Inverse Problem Stagnation Point Direct Problem Shock Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.D. Van Dyke, Hypersonic flow behind a paraboloidal shock wave, J. Méc. Appl., 4, 4 (1965), 476–495.Google Scholar
  2. [2]
    C.C. Lin and S.I. Rubinow, On the Flow Behind Curved Shocks, J. Math, and Phys., Vol. 27, No. 2 July 1948, 105–129.MATHGoogle Scholar
  3. [3]
    H. Cabannes, Contribution à l’étude théorique des fluides compressibles, Ecoulements transsoniques, Ondes de choc. Chapitre III, Etude de l’onde de choc détachée au voisinage de son sommet. Ecole Normale Supérieure, Annales Scientifiques, Ser. 3, Vol. 69, 1952, 31–46.Google Scholar
  4. H. Cabannes, Tables pour détermination des ondes de choc détachées, La Recherche Aéronautique, No. 49, Jan-Feb. 1956, 11–15.Google Scholar
  5. [4]
    M.D. Van Dyke, A Model of Supersonic Flow Past Blunt Axisymmetric Bodies, with Application to Chester’s Solution. Journ. Fluid Mech., Vol. 3, Feb. 1958, 515–522.CrossRefMATHGoogle Scholar
  6. [5]
    О.М. ьелоцерковский, Выч. Маг., 3, (1958), 449–185. Прикл. Мат. Мех. 2, 22 (1958), 206–219, Прикл. Мат. Мех. 3, 24 (1960).Google Scholar
  7. [6]
    M. Inouye, J.V. Rakich, H. Lomax, A description of numerical mathods and computer programs for two-dimensional and axisymmetric supersonic flow over bunt-nosed and flared bodies, NASA TN D - 270, August.Google Scholar
  8. [7]
    R.J. Swigart, A Theory of Asymmetric Hypersonic Blunt Body Flows, AIAA Journal, 1, 5 (1963), 1034–1046.CrossRefGoogle Scholar
  9. [8]
    А.П. Ьазжин, А.А. Гладков, К решению обратной зачи методом разложения в рады, Инж. Журнал, 3, 111 (1963) 517–51E.Google Scholar
  10. [9]
    I.O. Bohachevsky, E.L. Rubin, R.E. Mates, A Direct Method for Computation of Nonequilibrium Flows with Detached Shock Waves, Abstract, AIAA 2nd Aerospace Sciences Meeting, New York, Jan. 25–27, 1965 (AIAA Paper No. 65–24).Google Scholar
  11. [10]
    V.V. Rusanow, A three-dimensional supersonic gas flow past smooth blunt bodies, Proc. of the 11th Intern. Congress of Appl. Mech., Munich 1964, 774–778.Google Scholar
  12. [11]
    C.P. Kentzer, The inverse blunt-body problem, Preprint, XV International Astronautical Congress, Warsawa, Sept. 7–12, 1964.Google Scholar
  13. [12]
    W.J. Prosnak, E. Luczywek, On the inverse asymmetric hypersonic blunt-body problem, Fluid Dynamics Transactions 3, (1967).Google Scholar
  14. [13]
    J.M. Breiter, E. Luczywek, Inverse blunt-body problem by the method of integral relations, Fluid Dynamics Trans., 4, 155–162.Google Scholar
  15. [14]
    E. Luczywek, Analysis of the method of integral relations in application to investigation of blunt-body flows (Diss., Warsaw Technological University, Warsaw 1966 - in Polish).Google Scholar
  16. [15]
    W.J. Prosnak, The asymmetric hypersonic blunt-body problem, Fluid Dynamics Transactions, vol. 2, (1965), 457–476.CrossRefGoogle Scholar
  17. [16]
    R.J. Swigart, The direct asymmetric hypersonic blunt-body problem, AIAA 4th Aerospace Sciences Meeting, Los Angeles, California, June 27–29, 1966, AIAA Paper No. 66–411.Google Scholar

Copyright information

© Springer-Verlag Wien 1970

Authors and Affiliations

  • Wlodzimierz Prosnak
    • 1
  1. 1.Computing Center Polish Academy of SciencesWarsawPoland

Personalised recommendations