Advertisement

Numerical Methods of Calculation of Reflection of Shock Waves in Real Gases

  • Tatiana V. Bazhenova
Part of the International Centre for Mechanical Sciences book series (CISM, volume 37)

Abstract

In considering the properties of strong shock waves consideration should always be given to the real properties of the gas, since the temperature increase taking place behind a shock wave produces physicochemical transformations, i.e., excitation of internal degrees of freedom and ionization, in the flow behind the wave.

Keywords

Shock Wave Triple Point Shock Tube Wedge Angle Mach Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sommerfeld A. Z. Math. Phys., Vol. 49, p. 11, 1901.Google Scholar
  2. [2]
    Lighthill, M.I. Proc. Roy. Soc., Vol. 198, No. 1055, p. 454, 1 949.MathSciNetGoogle Scholar
  3. [3]
    Ting, L. and H. F. Ludloff. JAS, Vol. 19, No. 5, p. 317 1952.MATHMathSciNetGoogle Scholar
  4. [4]
    Ting, L. and H.F. Ludloff. JAS, Vol. 18, No. 2, p. 143 1951.Google Scholar
  5. [5]
    Fletcher, G.H., A.H. Taub and W. Blackney. Rev. Mod.Phys., Vol. 23, No. 3, p. 271, 1951.CrossRefMATHGoogle Scholar
  6. [6]
    Chester, W. Phil. Mag., Vol. 7, 45, 1293, 1954./Russian transi. In Mekhanika, No. 3, 17, 1954/.Google Scholar
  7. [7]
    White, D.R. JAS, Vol. 18, No. 9, p. 633, 1951.Google Scholar
  8. [8]
    Ryzhov, O.S. and S.A. Khristianovich. PMM, Vol. 22, Issue 5, 1958.Google Scholar
  9. [9]
    Grib, A.A., O.S. Ryzhov and S.A. Khristianovich. PMTF, No. 1, 63, 1960.Google Scholar
  10. [10]
    Smith, G.L. Phys. Rev., Vol. 60, No. 11–12, p. 678, 1946.Google Scholar
  11. [11]
    Taub, A.H. and G.L. Smith. Phys. Rev., Vol. 60, No. 11, p. 671, 1946.Google Scholar
  12. [12]
    Bleakney, W. and A.H. Taub. Rev. Mod. Phys., Vol. 21, No. 4, P. 584. Russian transi. in VRT 1951, No.1.Google Scholar
  13. [13]
    Bleakney, W., C.M. Fletcher and D.K. Weimer. Phys. Rev., Vol. 76, P. 323, 1949.CrossRefGoogle Scholar
  14. [14]
    Polachek, H. and R.J. Seeger. Proc. Symposia in Appl. Math., Vol. 1, p. 119, 1949.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Courant, R. and K.O. Friedrichs. Supersonic Flow and Shock Waves. Wiley (Interscience), 1957.Google Scholar
  16. [16]
    Polacheck, H. and R.J. Seeger. Phys. Rev., Vol. 84, No. 5, p. 922, 1951.CrossRefGoogle Scholar
  17. [17]
    Smith, L.G. Bull. Amer. Phys. Soc., Vol. 2, No. 4, p. 216, 1957.Google Scholar
  18. [18]
    Kawamura, R. and H. Saito. J. Phys. Soc. Japan, Vol. 11, 1956.Google Scholar
  19. [19]
    Whitem, G.W. J. Fluid. Mech., Vol. 2, pt. 2, No. 5, p. 548, 1957.Google Scholar
  20. [20]
    Cabannes, H. Lois de la Réflection des Ondes de choc dans les écoulements plans non—stationnaires. ONERA, No. 8, 1955.Google Scholar
  21. [21]
    Bryson, A.E. and R.W.F. Gross. J. Fluid Mech., Vol. 10, P. 1, 1961.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    White, D.R. An Experimental survey of Mach reflection of shock waves, Proc. 2—nd Mid West conference of Fluid Mech. p. 253, 1952.Google Scholar
  23. [23]
    Bleakney, W. Proc. Symposia in Appl. Math., Vol. 5, p. 41, 1954.CrossRefGoogle Scholar
  24. [24]
    Syshchikova, M.P., A.N. Semenov and M.K. Berezkina. In the collection Aerodinamicheskiye issledovaniya sverkhzvukovykh techeniy /see (96)/. Nauka Publishing House, Moscow—Leningrad, 1967.Google Scholar
  25. [25]
    Gvozdeva, L.G. and O.A. Predvoditeleva. Dokl. AN SSSR, Vol. 163, No. 5, 1088, 1965.Google Scholar
  26. [26]
    Gvozdeva, L.G. and O.A. Predvoditeleva. In the collection Issledovaniya po fizicheskoy gazodinamike /see (77) /, 183. Nauka Publishing House, Moscow, 1966.Google Scholar

Copyright information

© Springer-Verlag Wien 1973

Authors and Affiliations

  • Tatiana V. Bazhenova
    • 1
  1. 1.Academy of Sciences, MoscowRussia

Personalised recommendations