Interaction between a Rotor System and Its Foundation

Part of the International Centre for Mechanical Sciences book series (CISM, volume 297)


A theoretical approach is developed and programmed to analyze the three-dimensional dynamic response of machines on foundations interacting with soil. Structures and soil are coupled by means of a substructure technique. The substructure behaviour of soil is treated for rigid and flexible foundation slabs of arbitrary shape by superposition of semianalytical solutions of viscoelastic halfspace field equations. The interaction between a single turbomachinery frame foundation and soil as well as the interaction through the underlying soil between adjacent block foundations are considered. The assumptions of perfectly smooth and perfectly welded contact at the interface between soil and bases bound the influence of shear stresses. The impact of foundation flexibility with respect to rotor vibrations is discussed. Experimental studies describe the measured sine sweep response and vibration modes of a small scale frame foundation and a rigid circular block foundation on compressed sand.


Base Plate Rotor System Dynamic Stiffness Dynamic Stiffness Matrix Rayleigh Wave Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aboul-Ella, F.A. & M. Novak,1978. Dynamic analysis of turbine-generator foundations. Presented at the 1978 Fall Convention, Housten, Tex., Oct.Google Scholar
  2. [2]
    Aboul-Ella, F.A. & M. Novak,1980. Dynamic response of pile-supported frame foundations. Journal of the Engineering Mechanics Division, Proc. ASCE, Vol. 106, No. EM6, Dec., pp. 1215–1232.Google Scholar
  3. [3]
    Almansi, E., 1907. Un teorema Sulle Deformazioni Elastiche dei Solidi Isotropi, Atti della reale accademia dei nazionale Lincei, Vol. 16, pp. 865–868.MATHGoogle Scholar
  4. [4]
    Crandall, S.H., Kurzweil, L.G. & A.K. Nigam,1971. On the measurement of Poisson’s ratio for modelling clay. Experimental Mechanics, 11, pp. 402–407.Google Scholar
  5. [5]
    Dasgupta, G., 1979. Wellposedness of Substructure Deletion Formulations. Proceedings, Sixteenth Midwestern Mechanics Conference, Vol. 10, Manhattan, Kansas.Google Scholar
  6. [6]
    Dasgupta, G., 1980. Foundation Impedance Matrices by Substructure Deletion. Journal of the Engineering Mechanics Division, American Society of Civil Engineers, Vol. 106, No. EM3, pp. 517–523.Google Scholar
  7. [7]
    Dietz, H.,1972. Stahlfundamente für Turbomaschinen. Beratungsstelle für Stahlverwendung, Düsseldorf, Merkblatt 146, 3.Google Scholar
  8. [8]
    Gasch, R & W. Sarfeld, 1980. Unwuchterzwungene Schwingungen des Systems Lavalläufer-Blockfundament–elastischer Halbraum, VDI-Berichte Nr. 381, pp. 129–138.Google Scholar
  9. [9]
    Gaul, L., 1977. Dynamische Wechselwirkung eines Fundamentes mit dem viskoelastischen Halbraum. Ing.-Archiv, 46, pp. 401–422.CrossRefMATHGoogle Scholar
  10. [10]
    Gaul, L., 1979. Dynamisches Halbraumverhalten infolge eines schuberregten Fundamentes. ZAMM 59, pp. 180–183.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Gaul, L., 1980. Zur Dynamik der Wechselwirkung von Strukturen mit dem Baugrund. Habil. Univ. Hannover, June.Google Scholar
  12. [12]
    Gaul, L., 1980a. Dynamics of frame foundations interacting with soil. Journal of Mechanical Design, Vol. 102, pp. 303–310.CrossRefGoogle Scholar
  13. [13]
    Gaul, L. & O. Mahrenholtz, 1981, 1984. Dynamische Wechselwirkung zwischen Maschine, Fundament und Baugrund. Arbeitsbericht zum DFG-Schwerpunktprogramm Betriebsverhalten dynamisch belasteter Maschinen (not published).Google Scholar
  14. [14]
    Gaul, L. & M. Plenge, 1983. Ein Baugrundmodell für geschichtete Baugründe mit viskoelastischem Stoffverhalten. ZAMM 63, pp. T50 - T53.Google Scholar
  15. [15]
    Holzlöhner, U., 1969. Schwingungen des elastischen Halbraumes bei Erregung auf einer Rechteckfläche. Ing.-Archiv, 18, pp. 370–379.Google Scholar
  16. [16]
    Huh, Y., Schmid, G. & M. Ottenstreuer, 1983. Evaluation oiw kinematic interaction of soil-foundation systems by boundary element method. SMIRT 7 Chicago, August, Paper K 814.Google Scholar
  17. [17]
    Knobloch, W. & Gaul, 1975. Dämpfungs-und Federverhalten elastischer und viskoelastischer Gründungen bei harmonischer Erregung. Kolloq. Viskoelastische Systeme, VDI-GKE, TU Berlin, pp. 412–451.Google Scholar
  18. [18]
    Krämer, E., 1984. Maschinendynamik. Springer Verlag, Berlin.CrossRefMATHGoogle Scholar
  19. [19]
    Novak, M., 1982. Response of hammer foundations. Proc. soil dynamics and earthquake engineering conference Southampton, July, pp. 783–797.Google Scholar
  20. [20]
    Ottenstreuer, M., 1982. Frequency dependent dynamic response of footings. Proc. soil dynamics and earthquake engineering conference, Southampton, July, pp. 799–809.Google Scholar
  21. [21]
    Sarfeld, W. & C. Fröhlich, 1980. Dynamische Wechselwirkung von Gebäuden und Fundamenten auf dem elastisch-isotropen Halbraum, Bauingenieur 55, pp. 419–426.Google Scholar
  22. [22]
    Thurat, B., 1978. Machine-Fundament-Baugrund. Diss. RWTH-Aachen.Google Scholar
  23. [23]
    Waas, G., 1972. Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media. Ph.D. Thesis, University of California, Berkeley.Google Scholar
  24. [24]
    Dominguez, J., 1978. Dynamic stiffness of rectangular foundations. Dep. of Civ. Eng. MIT R78–20.Google Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • L. Gaul
    • 1
  1. 1.University of the Federal German Armed ForcesHamburgGermany

Personalised recommendations