Advertisement

Stability of a two component fluid layer heated from below

  • Peter Glansdorff
Part of the International Centre for Mechanical Sciences book series (CISM, volume 74)

Abstract

We shall now be concerned with the so-called Bénard problem in a two component fluid layer. This problem has been studied recently by J.C. Legros [1, 2, 3] from the experimental point of view and theoretically by J.C. Legros, J.K. Platten, and P. Poty [4] (see also [9] ).

Keywords

Thermal Diffusion Rayleigh Number Trial Function Critical Rayleigh Number Cold Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.C. Legros, W.A. Van Hook, G. Thomaes, Chem. Phys. Letters 1, 696 (1968).CrossRefGoogle Scholar
  2. [2]
    J.C. Legros, W.A. Van Hook, G. Thomaes, Chem. Phys. Letters 2, 249 (1968).CrossRefGoogle Scholar
  3. [3]
    J.C. Legros, D. Rasse, G. Thomaes, Chem. Phys. Letters 4, 632 (1970).CrossRefGoogle Scholar
  4. [4]
    J.C. Legros, J.K. Platten, P. Poty, submitted to Phys. of Fluids.Google Scholar
  5. [5]
    S. Chandrashekhar, Hydrodynamic and Hydromagnetic Stability, Oxford, Clarendon Press (1961).Google Scholar
  6. [6]
    R.S. Schechter, D.M. Himmelblau, Phys. of Fluids, 8, 1431 (1965).CrossRefMathSciNetGoogle Scholar
  7. [7]
    J.C. Legros, W.A. Van Hook, G. Thomaes, Chem. Phys. Letters 2, 251 (1968).CrossRefGoogle Scholar
  8. [8]
    J.C. Legros, D. Rasse, G. Thomaes, Phisica, 57, 585 (1972).Google Scholar
  9. [9]
    R.S. Schechter, I. Prigogine, J.R. Hamm, Phys; of Fluids March, 3 (1972).Google Scholar
  10. [10]
    P. Glansdorff, I. Prigogine, Physica 30, 351 (1964).CrossRefMathSciNetGoogle Scholar
  11. [11]
    I. Prigogine, P. Glansdorff, Physica 31, 1242 (1965).CrossRefMathSciNetGoogle Scholar
  12. [12]
    For a general review, see for example:Google Scholar
  13. a.
    P. Glansdorff, I.Prigogine, Thermodynamic Theory of Structure and Fluctuations, Wiley, Interscience, London, 1971.MATHGoogle Scholar
  14. b.
    R.J. Donelly, R. Herman, I. Prigogine, Non Equilibrium Thermodynamics, Variational Techniques and Stability, The University of Chicago Press (1968).Google Scholar
  15. c.
    R.S. Schechter, The Variational Method in Engineering, Mc Graw Hill (1967).Google Scholar
  16. [13]
    S.R. De Groot, L’Effet Soret, Thesis, North Holland Publ. Co. Amsterdam (1945).Google Scholar
  17. [14]
    J.K. Platten, Int. J. Eng. Sci., 9 37 (1971).CrossRefMATHGoogle Scholar
  18. [15]
    J.K. Platten, Int. J. Eng. Sci., 9, 855 (1971).CrossRefMATHGoogle Scholar
  19. [16]
    J.K. Platten, private communication.Google Scholar
  20. [17]
    D.R. Caldwell, J. Fluid. Mech. 161 (1970).Google Scholar

Copyright information

© Springer-Verlag Wien 1971

Authors and Affiliations

  • Peter Glansdorff
    • 1
  1. 1.Université Libre, BruxellesBelgium

Personalised recommendations