Advertisement

Nonstandard Methods in Prediction

  • H. V. Poor
Part of the International Centre for Mechanical Sciences book series (CISM, volume 324)

Abstract

Recent developments in the theory and application of signal prediction are reviewed. In particular, three recently developed general methodologies for designing predictors under nonclassical operating conditions are presented. These three methodologies are robust prediction, high-speed Levinson modeling, and ACM nonlinear prediction. The first of these three methodologies deals with the design of linear predictors for situations in which the spectral model for the signal to be predicted is uncertain. In this context, a general formulation is presented through which the design of effective predictors can proceed in such situations. The second methodology involves the fitting of linear stochastic models to signals that are sampled at high rates relative to their underlying dynamics. Here, a representation of discrete-time signals based on divided-difference operators is used to develop Levinson-type algorithms that remain numerically stable in this high-speed regime. The third methodology involves the application of a family of fixed and adaptive nonlinear predictors, based on the approximate conditional mean (ACM) technique for recursive nonlinear filtering, to signals with a non-Gaussian component. This methodology is discussed in the specific context of intereference suppression in wideband digital communication systems; and this is seen to be a much more effective approach to such problems than are the traditional fixed and adaptive linear prediction approaches heretofore applied in such applications.

Keywords

Linear Prediction Less Mean Square Algorithm Spectral Entropy Robust Prediction Narrowband Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poor, H. V.: An Introduction to Signal Detection and Estimation, Springer-Verlag, New York 1988.CrossRefMATHGoogle Scholar
  2. 2.
    Goodwin, G. C. and S. Sin: Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood Cliffs, NJ 1984.MATHGoogle Scholar
  3. 3.
    Huber, P. J.: Robust Statistics, Wiley, New York 1981.CrossRefMATHGoogle Scholar
  4. 4.
    Kassam S. A. and H. V. Poor: Robust techniques for signal processing: A survey, Proc. IEEE, 73 (1985), 433–481.CrossRefMATHGoogle Scholar
  5. 5.
    Poor, H. V.: Robustness in Signal Detection, in: Communications and Networks: A Survey of Recent Advances (Eds. I. F. Blake and H. V. Poor), Springer-Verlag, New York 1986, 131–156.CrossRefGoogle Scholar
  6. 6.
    Poor, H. V.: Robust Filtering, in: Advances in Statistical Signal Processing — Vol. 1: Estimation (Ed. H. V. Poor), JAI Press, Greenwich, CT 1987, 329–360.Google Scholar
  7. 7.
    Salgado, M., R. H. Middleton and G. C. Goodwin: Connection between continuous and discrete Riccati equations with applications to Kaiman filtering, IEE Proceedings-D, 135 (1988), 28–34.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Vijayan, R., H. V. Poor, J. B. Moore, and G. C. Goodwin: A Levinson-type algorithm for modeling fast-sampled data, IEEE Trans. Automat. Contr., 36 (1991) 314–321.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Goodwin, G. C, R. H. Middleton and H. V. Poor: High-speed digital signal processing and control, Proc. IEEE, 80 (1992), to appear.Google Scholar
  10. 10.
    Masreliez, C. J.: Approximate non-Gaussian filtering with linear state and observation relations, IEEE Trans. Automat. Contr., AC-20 (1975), 107–110.CrossRefMATHGoogle Scholar
  11. 11.
    Ash, R. B. and M. F. Gardner: Topics in Stochastic Processes, Academic Press, New York 1975.MATHGoogle Scholar
  12. 12.
    Snyders, J.: Error formulae for optimal linear filtering, prediction and interpolation of stationary time series, Ann. Math. Stat., 43 (1972), 1935–1943.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Vastola, K. S. and H. V. Poor: An analysis of the effects of spectral uncertainty on Wiener filtering, Automatica, 28 (1983), 289–293.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vastola, K. S. and H. V. Poor: Robust Wiener-Kolmogorov theory, IEEE Trans. Inform. Theory, IT-30 (1984), 316–327.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hosoya, Y.: Robust linear extrapolations of second-order stationary processes, Ann. Prob., 6 (1978), 574–584.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Franke, J. and H. V. Poor: Minimax Robust Filtering and Finite-Length Robust Predictors, in: Robust and Nonlinear Time Series Analysis (Eds. J. Franke, W. Hardie, and R. D. Martin), Springer-Verlag, Heidelberg 1984, 87–126.CrossRefGoogle Scholar
  17. 17.
    Barbu, V. and Th. Precupanu: Convexity and Optimization in Banach Spaces, Editura Academici, Bucharest 1978.Google Scholar
  18. 18.
    Fan, K.: Minimax theorems, Proc. Nat. Acad. Sci., 39 (1953), 42–47.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pinsker, M. S.: Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco 1964.MATHGoogle Scholar
  20. 20.
    Franke, J.: Minimax robust prediction of discrete time series, Z. Wahr. verw. Geb., 68 (1985), 337–364.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Papoulis, A.: Maximum entropy and spectrum estimation: A review, IEEE Trans. Acoust. Speech and Signal Processing, ASSP-29 (1981), 1176–1186.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Huber, P. J.: A robust version of the probability ratio test, Ann. Math. Stat., 36 (1965), 1753–1758.CrossRefMATHGoogle Scholar
  23. 23.
    Poor, H. V.: On robust Wiener filtering, IEEE Trans. Automat. Contr., AC-25 (1980), 531–536.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kassam, S. A.: Robust hypothesis testing and robust time series interpolation and regression, J. Time Series Analysis, 3 (1982), 185–194.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ali, S. M. and S. D. Silvey: A general class of coefficients of divergence of one distribution from another, J. Roy. Stat. Soc, Series B, 28 (1966), 131–142.MathSciNetMATHGoogle Scholar
  26. 26.
    Csiszar, I.: “Information-type measures of difference of probability distributions and indirect observations,” Studia Scientarium Mathematicerium Hungarica, 2 (1967), 229–318.Google Scholar
  27. 27.
    Vastola, K. S. and H. V. Poor: On the p-point uncertainty class, IEEE Trans. Inform. Theory, IT-30 (1984), 374–376.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Cimini, L. J. and S. A. Kassam: Robust and quantized Wiener filters for p-point spectral classes, in: Proc. 1980 Conf. Inform. Sciences and Systems, Princeton University, Princeton, NJ 1980, 314–318.Google Scholar
  29. 29.
    Kassam, S. A. and T. L. Lim: Robust Wiener filters, J. Franklin Inst., 304 (1977), 171–185.CrossRefMATHGoogle Scholar
  30. 30.
    Kassam, S. A.: The bounded p-point classes in robust hypothesis testing and filtering, in: Proc. 20th Annual Allerton Conf. on Comm., Control and Computing, University of Illinois, Urbana, IL 1982, 526–534.Google Scholar
  31. 31.
    Rieder, H.: Least favorable pairs for special capacities, Ann. Statist., 5 (1977), 909–921.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Bednarski, T.: “On solutions of minimax test problems for special capacities,” Z. Wahr. verw. Geb., 58 (1981), 397–405.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Cybenko, G.: The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems of equations, SIAM J. Scient. Statist. Comp., 1 (1980), 303–319.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Yagle, A. E. and B. C. Levy: The Schur algorithm and its applications, Acta Applicandae Mathematicae, 3 (1985), 255–284.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Kailath, T., A. Vieira, and M. Morf: Inverses of Toeplitz operators, innovations, and orthogonal polynomials, SIAM Rev., 20 (1978), 106–119.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Kailath, T., B. C. Levy, L. Ljung, and M. Morf: Fast time-invariant implementations of Gaussian signal detectors, IEEE Trans. Inform. Theory, IT-24 (1978), 469–477.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Dewilde, P., A. C. Vieira, and T. Kailath: On ageneralized Szegö-Levinson realization algorithm for optimal linear predictors based on a network synthesis approach, IEEE Trans. Circuits Syst., CAS-25 (1978), 663–675.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Pham, D. T. and A. le Breton: Levinson Durbin type algorithms for continuous time autoregressive models and applications, Mathematics of Control, Signals, and Systems, 4 (1991), 69–79.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Rialan, C. P., and L. L. Scharf: Fixed-point error analysis of the lattice and the Schur algorithms for the autocorrelation method of linear prediction, IEEE Trans. Acoust., Speech, and Signal Processing, 37 (1989), 1950–1957.CrossRefMATHGoogle Scholar
  40. 40.
    Vijayan, R. and H. V. Poor: Fast triangular factorization of covariance matrices of differenced time series, SIAM J. Matrix Anal. Appl., to appear.Google Scholar
  41. 41.
    Heinig, G. and K. Rost: Algebraic Methods for Toeplitz-like Matrices and Opera-tors, Springer-Verlag, Berlin 1988.Google Scholar
  42. 42.
    le Roux, J. and C. Gueguen: A fixed point computation of partial correlation coefficients, IEEE Trans. Acoust., Speech, and Signal Processing, ASSP-25 (1977), 257–259.CrossRefMATHGoogle Scholar
  43. 43.
    Poor, H. V. and R. Vijayan: Analysis of a Class of Adaptive Nonlinear Predictors, in: Advances in Communications and Signal Processing (Eds. W. A. Porter and S. C. Zak), Springer-Verlag, New York 1989, 231–241.CrossRefGoogle Scholar
  44. 44.
    Vijayan, R. and H. V. Poor: Nonlinear techniques for interference suppression in spread-spectrum systems, IEEE Trans. Commun., 38 (1990), 1060–1065.CrossRefGoogle Scholar
  45. 45.
    Garth, L. M. and H. V. Poor: Narrowband interference suppression in impulsive channels, IEEE Trans. Aerosp. Electron. Syst., 28 (1982), to appear.Google Scholar
  46. 46.
    Cooper, G. R. and C. D. McGillem: Modern Communications and Spread Spectrum, McGraw-Hill, New York 1986.Google Scholar
  47. 47.
    Hsu, F. M. and A. A. Giordano: Digital whitening techniques for improving spread-spectrum communications performance in the presence of narrow-band jamming and interference, IEEE Trans. Commun., COM-26 (1978), 209–216.CrossRefMATHGoogle Scholar
  48. 48.
    Ketchum J. W. and J. G. Proakis: Adaptive algorithms for estimating and suppressing narrow-band interference in PN spread-spectrum systems, IEEE Trans. Commun., COM-30 (1982), 913–924.CrossRefGoogle Scholar
  49. 49.
    Li, L-M. and L. B. Milstein: Rejection of narrow-band interference in PN spread-spectrum systems using transversal filters, IEEE Trans. Commun., COM-30 (1982), 925–928.CrossRefGoogle Scholar
  50. 50.
    Li, L-M. and L. B. Milstein: Rejection of pulsed CW interference in PN spread-spectrum systems using complex adaptive filters, IEEE Trans. Commun., COM-31 (1983), 10–20.CrossRefGoogle Scholar
  51. 51.
    Masry, E.: Closed-form analytical results for the rejection of narrow-band interference in PN spread-spectrum systems — Part I: Linear prediction filters, IEEE Trans. Commun., COM-32 (1984), 888–896.CrossRefMATHGoogle Scholar
  52. 52.
    Iltis, R. A. and L. B. Milstein: Performance analysis of narrow-band interference rejection techniques in DS spread-spectrum systems, IEEE Trans. Commun., COM-32 (1984), 1169–1177.MathSciNetCrossRefGoogle Scholar
  53. 53.
    Masry, E.: Closed-form analytical results for the rejection of narrow-band interference in PN spread-spectrum systems — Part II: Linear interpolation filters, IEEE Trans. Commun., COM-33 (1985), 10–19.CrossRefMATHGoogle Scholar
  54. 54.
    Iltis R. A. and L. B. Milstein: An approximate statistical analysis of the Widrow LMS algorithm with application to narrow-band interference rejection, IEEE Trans. Commun., COM-33 (1985), 121–130.CrossRefGoogle Scholar
  55. 55.
    Masry E. and L. B. Milstein: Performance of DS spread-spectrum receiver employing interference-suppression filters under a worst-case jamming condition, IEEE Trans. Commun., COM-34 (1986),13–21.CrossRefGoogle Scholar
  56. 56.
    Sorenson, H. W. and D. L. Alspach: Recursive Bayesian estimation using Gaussian sums, Automatica, 7 (1971), 465–479.MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Ljung, L. and T. Söderström: Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA 1983.MATHGoogle Scholar
  58. 58.
    Friedlander, B.: System identification techniques for adaptive signal processing, IEEE Trans. Acoust., Speech, and Signal Processing, vol. ASSP-30 (1982), 240–246.CrossRefGoogle Scholar
  59. 59.
    Friedlander, B.: A recursive maximum likelihood algorithm for ARMA line enhancement, IEEE Trans. Acoust., Speech and Signal Processing, ASSP-30 (1982), 651–657.CrossRefGoogle Scholar
  60. 60.
    Vijayan, R. and H. V. Poor: “Improved algorithms for the rejection of narrowband interferers from direct-sequence signals,” in: Proc. 22nd Annual Conference on Information Sciences and Systems, Princeton University, Princeton, NJ 1988, 851–856.Google Scholar
  61. 61.
    Li, L-M. and L. B. Milstein: “Rejection of CW interference in QPSK systems using decision-feedback filters,” IEEE Trans. Commun., COM-31 (1983), 473–483.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • H. V. Poor
    • 1
  1. 1.Princeton UniversityPrincetonUSA

Personalised recommendations