Skip to main content

Adaptive Linear Prediction and Process Order Identification

  • Chapter
Adaptive Signal Processing

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 324))

  • 122 Accesses

Abstract

Adaptive linear predictors are employed to provide solutions to problems ranging from adaptive source coding to autoregressive (AR) spectral estimation. In such applications, an adaptive linear predictor is realized by a linear combination of a finite number, M, of the observations immediately preceding each sample to be predicted, where the coefficients defining the predictor are “adapted to”, or estimated on the basis of, the preceding N + M observations in an attempt to continually optimize the predictor’s performance. This performance is thus inevitably dictated by the predictor's order, M, and the length of its learning period, N.

We formulate the adaptive linear predictor’s MSE performance in a series of theorems, with and without the Gaussian assumption, under the hypotheses that its coefficients are derived from either the (single) observation sequence to be predicted (dependent case), or a second, statistically independent realization (independent case). The established theory on adaptive linear predictor performance and order selection is reviewed, including the works of Davisson (Gaussian, dependent case), and Akaike (AR, independent case). Results predicated upon the independent case hypothesis (e.g., Akaike’s FPE procedure) are shown to incur substantial error under the dependent case conditions prevalent in typical adaptive prediction environments. Similarly, theories based on the Gaussian assumption are found to suffer a loss in accuracy which is proportional to the deviation, of the probability law governing the process in question, from the normal distribution.

We develop a theory on the performance of, and an optimal order selection criterion for, an adaptive linear predictor which is applicable under the dependent case, in environments where the Gaussian assumption is not necessarily justifiable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Davisson, “Theory of Adaptive Data Compression,” Ph.D. Dissertation, University of California at Los Angeles, 1964.

    Google Scholar 

  2. J. Makhoul, “Linear Prediction: A Tutorial Review,” Proc. IEEE, vol. 63, no. 4, pp. 561–580, April 1975.

    Article  Google Scholar 

  3. B. Widrow et al., “Adaptive Noise Cancelling: Principles and Applications,” Proc. IEEE, vol. 63, no. 12, pp. 1692–1716, Dec. 1975.

    Article  Google Scholar 

  4. F. W. Symons, “Narrow-Band Interference Rejection Using The Complex Linear Prediction Filter,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-26, pp. 94–98, Feb. 1978.

    Article  MATH  Google Scholar 

  5. S. M. Kay and S. L. Marple, Jr., “Spectrum Analysis- A Modern Perspective,” Proc. IEEE, vol. 69, no. 11, pp.1380–1419, Nov. 1981.

    Article  Google Scholar 

  6. L. B. Milstein, “Recent Developments In Interference Suppression Techniques In Spread Spectrum Communications,” Proc. IEEE 1988 Annual Workshop on Information Theory, pp. 6–16, April 1988.

    Google Scholar 

  7. L. D. Davisson, “The Prediction Error of Stationary Gaussian Time Series of Unknown Covariance,” IEEE Trans. Inform. Theory, vol. IT-19, no. 4, pp. 527–532, Oct. 1965.

    Article  MathSciNet  Google Scholar 

  8. L. D. Davisson, “The Adaptive Prediction of Time Series,” in Proc. Nat. Electronics Conf, vol. 22, pp. 557–561, 1966.

    Google Scholar 

  9. H. Akaike, “Fitting Autoregressive Models For Prediction,” Ann. Inst. Statist. Math., vol. 21, no. 2, pp. 243–247, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Akaike, “Statistical Predictor Identification,” Ann. Inst. Statist. Math., vol. 22, no. 2, pp. 203–217, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Akaike, “Information Theory and An Extension of the Maximum Likelihood Principle,” in Proc. 2nd Int. Symp. Information Theory, pp. 267–281, 1972.

    Google Scholar 

  12. H. Akaike, “Use of An Information Theoretic Quantity for Statistical Model Identification,” in Proc. 5th Hawaii Int. Conf. System Sciences, pp. 249–250, 1972.

    Google Scholar 

  13. H. Akaike, “A New Look At the Statistical Model Identification,” IEEE Trans. Automat. Contr., vol. AC-19, no. 6, pp. 716–723, Dec. 1974.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Akaike, “A Bayesian Analysis of the Minimum AIC Procedure,” Ann. Inst. Statist. Math., vol. 30, part A, pp. 9–14, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Parzen, “Some Recent Advances in Time Series Modeling,” IEEE Trans. Automat. Contr., vol. AC-19, no. 6, pp. 723–730, Dec. 1974.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Parzen, “Multiple Time Series: Determining the Order of Approximating Autoregressive Schemes,” Multivariate Analysis — TV, ed. by P. Krishnaiah, North Holland: Amsterdam, pp. 283–295, 1977.

    Google Scholar 

  17. R. H. Jones, “Identification and Autoregressive Spectrum Estimation,” IEEE Trans. Automat. Contr., vol. AC-19, no. 6, pp. 894–898, Dec. 1974.

    Article  Google Scholar 

  18. R. H. Jones, “Autoregression Order Selection,” Geophys., vol. 41, pp. 771–773, Aug. 1976.

    Article  Google Scholar 

  19. G. Schwartz, “Estimating the Dimension of a Model,” Ann. Statist., vol. 6, pp. 461–464, 1978.

    Article  MathSciNet  Google Scholar 

  20. J. Rissanen, “Modeling by Shortest Data Description,” Automatica, vol. 14, pp. 465–471, 1978.

    Article  MATH  Google Scholar 

  21. J. Rissanen, “A Universal Prior for Integers and Estimation by Minimum Description Length,” Ann. Statist., vol. 11, no. 2, pp. 416–431, June 1983.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Rissanen, “Universal Coding, Information, Prediction, and Estimation,” IEEE Trans. Inform. Theory, vol. IT-30, no. 4, pp. 629–636, July 1984.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. J. Hannan and B. G. Quinn, “The Determination of the Order of an Autoregression,” Jour. Roy. Statist. Soc, Ser. B, vol. 41, no. 2, pp. 190–195, 1979.

    MathSciNet  MATH  Google Scholar 

  24. E. J. Hannan, “The Estimation of the Order of an ARMA Process,” Ann. Statist., vol. 8, no. 5, pp. 1071–1081, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. A. Fuller and D. P. Hasza, “Properties of Predictors for Autoregressive Time Series,” Jour. Am. Statist. Assoc, vol. 76, no. 373, pp. 155–161, Mar. 1981.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. J. Bhansali and D. Y. Downham, “Some Properties of an Autoregressive Model Selected by a Generalization of Akaike’s FPE Criterion,” Biometrika, vol. 64, no. 3, pp. 547–551, 1977.

    MathSciNet  MATH  Google Scholar 

  27. R. J. Bhansali, “Effects of Not Knowing the Order of an Autoregressive Process on the Mean Squared Error of Prediction — I,” Jour. Am. Statist. Assoc, vol. 76, no. 375, pp. 588–597, Sept. 1981.

    MathSciNet  MATH  Google Scholar 

  28. R. R. Bitmead, “Convergence in Distribution of LMS-Type Adaptive Parameter Estimates,” IEEE Trans. Automat. Contr., vol. AC-28, no. 1, Jan. 1983.

    Article  MathSciNet  Google Scholar 

  29. R. R. Bitmead, “Convergence Properties of LMS Adaptive Estimators with Unbounded Dependent Inputs,” IEEE Trans. Automat. Contr., vol. AC-29, no. 5, May 1984.

    MathSciNet  Google Scholar 

  30. L. Gyorfl, “Adaptive Linear Procedures Under General Conditions,” IEEE Trans. Inform. Theory, vol. IT-30, no. 2, pp. 262–267, Mar. 1984.

    Article  MathSciNet  Google Scholar 

  31. N. Kunitomo and T. Yamamoto, “Properties of Predictors in Misspecifled Autoregressive Time Series Models,” Jour. Am. Statist. Assoc, vol. 80, no. 392, pp. 941–950, Dec. 1985.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. L. Lai and C. Z. Wei, “Extended Least Squares and Their Applications to Adaptive Control and Prediction in Linear Systems,” IEEE Trans. Automat. Contr., vol. AC-31, no. 10, pp. 898–906, Oct. 1986.

    Article  MathSciNet  MATH  Google Scholar 

  33. T. C. Butash and L. D. Davisson, “An Overview of Adaptive Linear Minimum Mean Square Error Predictor Performance,” in Proc. 25th IEEE Conf. Decision and Control, pp. 1472–1476, Dec. 1986.

    Google Scholar 

  34. C. Z. Wei, “Adaptive Prediction by Least Squares Predictors in Stochastic Regression Models With Applications to Time Series,” The Ann. of Statistics, vol. 15, no. 4, pp. 1667–1682, 1987.

    Article  MATH  Google Scholar 

  35. M. Wax, “Order Selection for AR Models by Predictive Least Squares,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, no. 4, pp. 581–588, April 1988.

    Article  MATH  Google Scholar 

  36. L. D. Davisson and T. C. Butash, “Adaptive Linear Prediction and Process Order Identification,” in Proc. IEEE 1988 Annual Workshop on Information Theory, pp. 20–32, April 1988.

    Google Scholar 

  37. T. C. Butash and L. D. Davisson, “On The Design and Performance of Adaptive LMMSE Predictors,” in Proc. 1988 IEEE Int. Symp. Information Theory, June 1988.

    Google Scholar 

  38. A. Krieger and E. Masry, “Convergence Analysis of Adaptive Linear Estimation for Dependent Stationary Processes,” IEEE Trans. Inform. Theory, vol. IT-34, no. 4, pp. 642–654, July 1988.

    Article  MathSciNet  MATH  Google Scholar 

  39. E. J. Hannan, “Rational Transfer Function Approximation,” Stat. Science, vol. 2, no. 2, pp. 135–161, 1987.

    Article  MathSciNet  Google Scholar 

  40. J. L. Doob, Stochastic Processes, John Wiley, New York, 1952.

    Google Scholar 

  41. P. H. Diananda, “Some Probability Limit Theorems With Statistical Applications,” Proc. Cambridge Philos. Soc, vol. 49, pp. 239–246, Oct. 1952.

    Article  MathSciNet  Google Scholar 

  42. H. Crame’r, Mathematical Methods of Statistics, Princeton University Press, Princeton, New Jersey, 1946.

    Google Scholar 

  43. M. Rosenblatt, “A Central Limit Theorem and A Strong Mixing Condition,” Proc. Nat. Acad. Sci., vol. 42, pp. 43–47, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  44. P. Hall and C.C. Heyde, Martingale Limit Theory and its Application, Academic Press, New York, 1980.

    MATH  Google Scholar 

  45. R. M. Gray and L. D. Davisson, Random Processes: A Mathematical Approach for Engineers, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

    Google Scholar 

  46. P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, 1968.

    MATH  Google Scholar 

  47. M. Iosifescu and R. Theodorescu, Random Processes and Learning, Springer-Verlag, New York, 1969.

    Book  MATH  Google Scholar 

  48. A. N. Kolmogorov and Y. A. Rozanov, “On Strong Mixing Conditions for Stationary Gaussian Processes,” Theory Prob. Appl., vol. 5, pp. 204–208, 1960.

    Article  MathSciNet  Google Scholar 

  49. Y. A. Rozanov, Stationary Random Processes, Holden-Day, San Francisco, California, 1967.

    MATH  Google Scholar 

  50. I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen Netherland, 1971.

    MATH  Google Scholar 

  51. M. Rosenblatt, Random Processes, Springer-Verlag, New York, 1974.

    Book  MATH  Google Scholar 

  52. T. C. Butash, “Adaptive Linear Prediction and Process Order Identification,” Ph.D. Dissertation, University of Maryland at College Park, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Butash, T.C., Davisson, L.D. (1991). Adaptive Linear Prediction and Process Order Identification. In: Davisson, L.D., Longo, G. (eds) Adaptive Signal Processing. International Centre for Mechanical Sciences, vol 324. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2840-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2840-4_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82333-0

  • Online ISBN: 978-3-7091-2840-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics