Authentication / Secrecy Codes

  • M. De Soete
Part of the International Centre for Mechanical Sciences book series (CISM, volume 313)


We deal with codes having unconditional security, which means that the security is independent of the computing power. Analogously to the theory of unconditional secrecy due to Shannon [17] Simmons developed a theory of unconditional authentication [19]. In this paper we give some bounds and constructions for authentication/secrecy codes with splitting, based on finite geometry and combinatorics.


Encode Strategy Authentication Scheme Source State Authentication Code Generalise Quadrangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beth, T., Jungnickel, D., Lenz, H.: Design Theory, Wissenschaftsverlag Bibliografisches Institut Mannheim, 1985.Google Scholar
  2. [2]
    Bose, R. C.: Graphs and designs, in: Finite geometric structures and their applications, ed. A. Barlotti, Ed. Cremonese Roma, 1973, 1–104.Google Scholar
  3. [3]
    Cameron, P. J., Van Lint, J. H.: Graph Theory, Coding Theory and Block Designs, Lond. Math. Soc. Lect. Notes 19, Camb. Univ. Press, 1975.Google Scholar
  4. [4]
    Brickell, E. F.: A few results in message authentication, in: Proc. of the 15th Southeastern Conf. on Combinatorics, Graph theory and Computing, Boca Raton LA, 1984, 141–154.Google Scholar
  5. [5]
    Dembowski, P.: Finite Geometries, Springer Verlag, 1968.Google Scholar
  6. [6]
    De Soete, M.: Some Constructions for Authentication/Secrecy Codes, in: Advances in Cryptology—Proceedings of Eurocrypt ‘88, Lect. Notes Comp. Science 330, Springer 1988, 57–75.Google Scholar
  7. [7]
    De Soete, M., Vedder, K. and Walker, M.: Authentication Schemes derived from Genersalised Polygons, in: Advances in Cryptology—Proceedings Eurocrypt ‘89, Lect. Notes Comp. Science, to appear.Google Scholar
  8. [8]
    De Soete, M., Vedder, K., and Walker, M.: Cartesian Authentication Codes, in preparation.Google Scholar
  9. [9]
    Feit, W. and Higman, G.: The non—existence of certain generalised polygons, J. Algebra 1 (1964), 114–131.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    Gilbert, E. N., MacWilliams, F. J. and Sloane, N. J. A.: Codes which detect deception, Bell Sys. Techn. J., Vol. 53–3 (1974), 405–424.MathSciNetGoogle Scholar
  11. [11]
    Hanani, H.: A Class of Three-Designs, J.C.T.(A) 26 (1979), 1–19.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    Hughes, D. R. and Piper, F. C.: Design theory, Cambridge University Press, 1985.Google Scholar
  13. [13]
    Jungnickel, D.: Graphen, Netzwerke und Algorithmen, Wissenschaftsverlag Bib. Inst. Zürich, 1987.MATHGoogle Scholar
  14. [14]
    Massey, J. L.: Cryptography–A Selective Survey, in: Proc. of 1985 Int. Tirrenia Workshop on Digital Communications, Tirrenia, Italy, 1985, Digital Communications, ed. E. Biglieri and G. Prati, Elsevier Science Publ., 1986, 3–25.Google Scholar
  15. [15]
    Payne, S. E. and Thas, J. A.: Finite generalized quadrangles, Research Notes in Math. #110, Pitman Publ. Inc. 1984.Google Scholar
  16. [16]
    Schôbi, P.: Perfect authentication systems for data sources with arbitrary statistics, Eurocrypt 1986, Preprint.Google Scholar
  17. [17]
    Shannon, C. E.: Communication Theory of Secrecy Systems, Bell Technical Journal, Vol. 28 (1949), 656–715.CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    Simmons, G. J.: Message Authentication: A Game on Hypergraphs, in: Proc. of the 15th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Baton Rouge LA Mar 5–8 1984, Cong. Num. 45, 1984, 161— 192.Google Scholar
  19. [19]
    Simmons, G. J.: Authentication theory/Coding theory, in: Proc. of Crypto’84, Santa Barbara, CA, Aug 19–22, 1984, Advances in Cryptology, ed. R. Blakley, Lect. Notes Comp. Science 196, Springer 1985, 411–432.Google Scholar
  20. [20]
    Simmons, G..1.: A natural taxonomy for digital information authentication schemes, in: Proc. of Crypto ‘87, Santa Barbara, CA, Aug 16–20,1987, Advances in Cryptology, ed. C. Pomerance, Lect. Notes Comp. Science 293, Springer 1988, 269–288.Google Scholar
  21. [21]
    Stinson, D. R.: A construction for authentication/secrecy codes from certain combinatorial designs, J. of Cryptology Vol. 1, nr. 2 (1988), 119–127.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    Tits, J.: Classification of buildings of spherical type and Moufang polygons, Atti dei Convegni Lincei 17 (1976), 230–246.Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • M. De Soete
    • 1
  1. 1.MBLE-I.S.G.BrusselBelgium

Personalised recommendations