Advertisement

Circle Geometry and Its Application to Code Theory

  • H. Karzel
Part of the International Centre for Mechanical Sciences book series (CISM, volume 313)

Abstract

There are close relations between the different types of finite circle geometries, like Möbius-, Laguerre- or Minkowski planes, and binary codes via incidence matrices as well as arbitrary q-nary codes via chain structures. In certain cases these q-nary codes are (MDS)- codes and Laguerre codes. Many geometric problems can be translated into the language of codes and vice versa. The objective of this lecture is to discuss these various aspects. The question how all these structures (or which of these) can be used for practical purposes in coding or in cryptography remains for further research.

Keywords

Automorphism Group Projective Space Projective Plane Finite Field Prime Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    HALDER, H.-R., HEISE, W.: Einführung in die Kombinatorik. Carl Hanser Verlag, München Wien 1976MATHGoogle Scholar
  2. [2]
    HEISE, W., QUATTROCCHI, P.: Informations-und Codierungstheorie. Springer Verlag, Berlin-Heidelberg-New York 1989CrossRefGoogle Scholar
  3. [3]
    KARZEL, H., KROLL, H.-J.: Geschichte der Geometrie seit Hilbert. Wiss. Buchgesellschaft Darmstadt 1988Google Scholar
  4. [4]
    BENZ, W.: Vorlesung über Geometrie der Algebren. Berlin-Heidelberg-New York 1973Google Scholar
  5. [5]
    KARZEL, H.: Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und 2-Strukturern mit Rechtecksaxiom. Abh. Math. Sem. Univ. Hamburg 32 (1968), 191–206CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    KARZEL, H., KROLL, H.-J.: Perspectivities in circle geometries. In: Geometry — von STAUDT’S point of View. Nato Advanced Study Institutes Series C: Math. and Phys. Sci. Dordrecht, Holland (1981), 51–99Google Scholar
  7. [7]
    KARZEL, H., SÖRENSEN, K., and WINDELBERG, D.: Einführung in die Geometrie. Göttingen 1973Google Scholar
  8. [8]
    KARZEL, H.: Kinematic Spaces. Symp. Matematica, Ist. Naz. di Alta Matematica 11 (1973), 413–439MathSciNetGoogle Scholar
  9. [9]
    KIST, G.: Projektiver Abschluß 2-gelochter Räume. Res. Math. 3 (1980), 192–211CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    SORENSEN, K.: Ein Beweis von H. KARZEL und I. PIEPER. J. of Geometry 32 (1988), 131–132CrossRefMathSciNetGoogle Scholar
  11. [11]
    KARZEL, H.: Porous Double Spaces. J. of Geometry 34 (1989), 80–104CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    BUEKENHOUT, F.: Une caracterisation des espaces affins basee sur la notion de droite. Math. Z. 111 (1969), 367–371CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    KARZEL, H., PIEPER, I.: Bericht über geschlitzte Inzidenzgruppen. Jber. DMV 72 (1970), 70–114MATHGoogle Scholar
  14. [14]
    KLOSSEK, S.: Kommutative Spiegelungsräume. Mitt. Math. Sem. Gießen 117 (1975)Google Scholar
  15. [15]
    SOUBLIN, J.P.: Etude algebrique de la notion de moyenne. Journal de Mathematiques pures et appliques 30 (1971)Google Scholar
  16. [16]
    KARZEL, H., OSWALD, A.: Near-rings, (MDS)- and Laguerre Codes. To apparGoogle Scholar
  17. [17]
    PILZ, G.: Near-rings. Amsterdam-New York-Oxford 1977Google Scholar
  18. [18]
    MELDRUM, J.: Near-rings and their links with groups. Pitman Publ. Co. (Research Note Series No. 134 ), 1985Google Scholar
  19. [19]
    WÄHLING, H.: Theorie der Fastkörper. Thales Verlag Essen 1987Google Scholar
  20. [20]
    WITT, E.: Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Sem. Univ. Hamburg 12 (1938), 256–264CrossRefMathSciNetGoogle Scholar
  21. [21]
    HEISE, W.: Eine Definition des Möbiusraumes. Manuscripta math. 2 (1970), 39–47CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    KERBY, W.: On infinite sharply multiply transitive groups. Hamburger Math. Einzelschr., Neue Folge 6, Göttingen 1974Google Scholar
  23. [23]
    BENZ, W.: Über Möbiusebenen. Ein Bericht. Jber. DMV 63 (1960), 1–27MATHMathSciNetGoogle Scholar
  24. [24]
    BLASCHKE, W.: liber die Laguerre’sche Geometrie orientierter Geraden in der Ebene I. In: BLASCHKE, W. Gesammelrte Werke, Band 1. Thales Verlag Essen (1982), 253–261Google Scholar
  25. [25]
    HEISE, W., KARZEL, H.: Symmetrische Minkowski-Ebenen. J. of Geometry 3 (1973), 5–20CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    ARTZY, R.: A Pascal Theorem Applied to Minkowski Geometry. J. of Geometry 3 (1973), 93–105CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    KARZEL, H.: Symmetrische Permutationsmengen. Äquationes Mathematicae 17 (1978), 83–90CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    WEFELSCHEID, H.: Verallgemeinerte Minkowski-Geometrie. In: Contributions to Geometry. Proceedings of the Geometry Symposium in Siegen 1978. Edited by J. Tölke and J. Wills. Birkhäuser Verlag Basel 1979Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • H. Karzel
    • 1
  1. 1.Technical UniversityMünchenGermany

Personalised recommendations