Advertisement

Numerical Modelling of Tunnels

  • G. Swoboda
Part of the International Centre for Mechanical Sciences book series (CISM, volume 311)

Abstract

Until a few years ago tunnel construction was based exclusively on experience. Numerical methods, however, constitute a very valuable supplement. Shown here are the approximations necessary for 2D analysis. The most important load cases, such as dead load or water pressure, are also illustrated. The damage tensor theory needed for realistic simulation of jointed rock is also presented. In future 3D analysis will take on increasing significance, for which reason the pertinent models are also dealt with.

Keywords

Earth Pressure Jointed Rock Dead Load Tunnel Excavation Rock Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. MÜLLER, Salzburg: Der Felsbau, III. Bd., Tunnelbau, F.Enke 1987Google Scholar
  2. [2]
    M. BAUDENDISTEL: Zur Bemessung von Tunnelauskleidungen in wenig festem Gebirge. Rock Mechanics, Suppl. 2, 279–312 (1973)Google Scholar
  3. [3]
    G. SWOBODA, F. LAABMAYR: Beitrag zur Weiterentwicklung der Berechnung flachliegender Tunnelbauten im Lockergestein. In Lessmann: “Moderner Tunnelbau bei der Münchner U-Bahn”. Wien: Springer 1978. Übersetzung: Peking 1980, Tokio 1982.Google Scholar
  4. [4]
    F. LAABMAYR, G. SWOBODA: Zusammenhang zwischen elektronischer Berechnung und Messung; Stand der Entwicklung für seichtliegende Tunnel. Rock Mechanics, Supplement 8 (1979), S 29–42.Google Scholar
  5. [5]
    G. SWOBODA: Finite Element Analysis of the New Austrian Tunneling Method (NATM). Proceedings of the 3rd International Conf. on Numerical Methods in Geomechanics, Aachen 1979, p 581–586.Google Scholar
  6. [6]
    G. SWOBODA: Special Problems During the Geomechanical Analysis of Tunnels. Proceedings of the 4th Conference on Numerical Methods in Geomechanics 1982, Edmonton, p 605–609.Google Scholar
  7. [7]
    O.C. ZIENKIEWICZ: The Finite Element Method. London: McGraw Hill 1982.Google Scholar
  8. [8]
    K. GIRKMANN: Flächentragwerke, Wien: Springer 1983.Google Scholar
  9. [9]
    K. GIRKMANN: Zum Halbraumproblem von Michell. Ing. Archiv 14, (1943) 106–112.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    K. KOVARI, C. AMSTAD, J. KPÖPEL: Neue Entwicklungen in der Instrumentierung von Untertagbauten und anderen geotechnischen Konstruktionen, Schweiz, Ingenieur und Architekt, H 41. (1979).Google Scholar
  11. [11]
    G. SWOBODA, W. MERTZ, G. BEER: Application of coupled FEM-BEM analysis for three-dimensional tunnel analysis. in: Boundary Elements (ed. Q.H. Du), p. 537–550, Peking: Pergamon Press, 1986.CrossRefGoogle Scholar
  12. [12]
    G. SWOBODA, W. MERTZ, G. BEER: Rheological analysis of tunnel excavation by means of coupled finite Element (FEM) — boundary element (BEM) analysis. Numerical and Analytical Methods in Geomechanics. (in press)Google Scholar
  13. [13]
    G. SWOBODA: Boundary Element, ein Bindeglied zwischen analy- tischen und numerischen Methoden. Baupraxis — Baustatik, Stuttgart 1987.Google Scholar
  14. [14]
    G. SWOBODA, F. LAABMAYR, I. MADER: Grundlagen und Entwicklung bei Entwurf und Berechnung im seichtliegenden Tunnelbau. Teil 2, Felsbau 4, (1986) S.184–187.Google Scholar
  15. [15]
    R.E. GOODMAN, R.L. TAYLOR and T. BREKKE: A model for the mechanics of jointed rock. Journal of Soil Mechanics and Foundation Division, ASCE 94, p. 637–658. (1968).Google Scholar
  16. [16]
    C.S. DESAI, M.M. ZAMAN, J.G. LIGHTNER, H.J. SIRIWARDANE: Thin-layer element for interfaces and joints. Internal Journal for Numerical and Analytical Methods in Geomechanics 8, p. 19–43 (1984).CrossRefGoogle Scholar
  17. [17]
    W. WITTKE. Static analysis for underground openings in jointed rock, in Ch.S. Desai, J.T. Christian: Numerical Methods in Geotechnical Engineering. McGraw Hill, New York 1977.Google Scholar
  18. [18]
    O.G. ZIENKIEWICZ, C. DULLAGE: Analysis of non-linear problems in rock mechanics with particular reference to jointed rock systems. Proceedings of the 2nd International Congress on Rock Mechanics Sec., 8–14 (1970).Google Scholar
  19. [19]
    T. MAINI, P. CUNDALL, J. MARTI, P. BERESFORD, N. LAST, M. ASGIAN: Computer modelling of jointed rock mass. Technical Reprint N-78–4. U.S. Army Engineers, Vicksburg, 1978.Google Scholar
  20. [20]
    T. ASAI, M. NISHIMURA, T. SAITO, M. TERADA: Effects of rock bolting in discontinuous rock mass. 5th International Conference on Numerical Methods in Geomechanics, Nagoya, p. 1273–1280 (1985).Google Scholar
  21. [21]
    M.G. KATONA: A simple contact-friction interface element with application to buried culverts. Internal Journal for Numerical and Analytical Methods in Geomechanics, 7, p. 371–381 (1983).CrossRefMATHGoogle Scholar
  22. [22]
    NETDIG: Digitalisierung von Finite-Element-Netzen V 2.1 Manual University of Innsbruck 1985.Google Scholar
  23. [23]
    M. BAUDENDISTEL: Zum Entwurf von Tunneln mit großem Ausbruchsquerschnitt. Rock Mechanics, Supplement 8, p. 75–100 (1979).Google Scholar
  24. [24]
    K. SCHIKORA, T. FINK: Berechnungsmethoden moderner bergmännischer Bauweisen beim U-Bahnbau. Bauingenieur, 57, p. 193–198 (1982).Google Scholar
  25. [25]
    T. KYOYA, Y. ICHIKAWA, T. KAWAMOTO: A damage mechanics theory for discontinous rock mass. 5th Int. Conf. on Num. Meth. in Geom., Nagoya, 1985, p.469–480Google Scholar
  26. [26]
    G. SWOBODA, G. BEER: Städtischer Tunnelbau — Rechenmodelle und Resultat-interpretation als Grundlage für Planung und Bauausführung. Finite Elemente in der Baupraxis, München, 1984.Google Scholar
  27. [27]
    G. BEER, G. SWOBODA: On the efficient Analysis of Shallow Tunnels. Comp. and Geomech. 1985, 1, pp. 15–31.Google Scholar
  28. [28]
    G. SWOBODA: FINAL, Finite Element Analyse linearer und nichtlinearer Strukturen, Programmvcrsion 6.1. Universität Innsbruck, 1988.Google Scholar
  29. [29]
    S. AHMAD, B. IRONS, O.C. ZIENKIEWICZ: Analysis of Thick and Thin Shell Structures by Curved Finite Elements. Inter. J. Num. Meth. Eng., 1970, 2, pp. 419–451.CrossRefGoogle Scholar
  30. [30]
    A. SCHMID: Beitrag zur Berechnung geschichteter Schalentragwerke mittels der Methode der Finiten Elemente. Dissertation, Innsbruck, 1988.Google Scholar
  31. [31]
    W. MERTZ: Numerische Modelle drei-dimensionaler plastischer, visko-plastischer und visko-elastischer Spannungen und Verformungen in der Geomechanik unter besonderer Berücksichtigung seichtliegender Tunnel. Dissertation, Innsbruck, 1988.Google Scholar
  32. [32]
    C.S. DESAI: Somasundaram S., Frantziskonis, G., A hierarchical approach for constitutive modelling of geological materials. Inter. Jrnl. Num. and Anal. Meth in Geom., 1986, 11.Google Scholar
  33. [33]
    F. PACHER: Kennziffern des Flächengefüges. Geol. und Bauw. 24, 223ff, 1959.Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • G. Swoboda
    • 1
  1. 1.University of InnsbruckInnsbruckAustria

Personalised recommendations