Advertisement

Dynamic Analysis of Saturated Non Linear Media

  • D. Aubry
  • H. Modaressi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 311)

Abstract

Some considerations are given on the modelling of wave propagations in porous media. Two models similar to the one proposed by Biot many years ago are described and the numerical implementation using a variational formulation and a finite element approach for the solid and the fluid phase are discussed. The discretization with time may be performed with a mixed implicit-explicit scheme which can combine the advantages of each technique. Finally the case of seismic loading in the form of a given propagating free field is analyzed.

Keywords

Porous Medium Pore Pressure Effective Stress Fluid Phase Void Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubry D., Hujeux J.C., Lassoudière F. & Meimon Y. (1982) A double memory model with multiple mechanisms for cyclic soil behaviour, Int. Symp. Num. Mod. Geomech., Balkema.3–13.Google Scholar
  2. 2.
    Aubry D., Chouvet D., Modaressi A. & Modaressi H. (1985) GEFDYN_5: Logiciel danalyse du comportement statique et dynamique des sols par éléments finis avec prise en compte du couplage sol-eau-air. Rapport Scientifique Ecole Centrale de Paris.Google Scholar
  3. 3.
    Aubry D., Modaressi H. (1988) Numerical modelling of the dynamics of saturated anelastic soils, Seismic hazards in Mediterranean regions (Ed. J. Bonnin, M. Cara, A. Cisternas) Kluwer, Dordrecht, p 151–172.Google Scholar
  4. 4.
    Auriault J.L., Sanchez Palencia E. (1977) Etude du comportement macroscopique d’un milieu poreux saturé déformable. J. Mécanique, vol 16, 4, 573–603.MathSciNetGoogle Scholar
  5. 5.
    Bear J., Pinder G.F. (1983) Porous medium deformation in multiphase flow. J. Geotech. Eng., 109, 5, 736–737.CrossRefGoogle Scholar
  6. 6.
    Chouvet D. (1983) Calcul elastoplastique d’interaction dynamique sols-Structure ; Application aux ouvrages de soutenement. Doctoral thesis. Ecole Centrale de Paris.Google Scholar
  7. 7.
    Hughes TJR, Liu IK (1977) Implicit explicit finite elements in transient analysis: stability theory. J. Applied Mechanics. Vol 45, 371–375CrossRefGoogle Scholar
  8. 8.
    Modaressi H. (1987) Modélisation numérique de la propagation des ondes dans les milieux poreux anélastiques, Doctoral Dissertation, Ecole Centrale de Paris.Google Scholar
  9. 9.
    Park K.C. (1983) Stabilization of partitionned solution procedures for pore-fluid interaction analysis Int. J. Num. Eng., vol 19, 1669–1673.CrossRefMATHGoogle Scholar
  10. 10.
    Zienkiewicz O.C. & Shiomi T. (1984) Dynamic behaviour of saturated porous media ; The generalized Biot formulation and its numerical solution. Int. Jour. Num. and Anal. Meth. Geomech. vol 8, 71–96.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • D. Aubry
    • 1
  • H. Modaressi
    • 2
  1. 1.Ecole Centrale de ParisParisFrance
  2. 2.Bureau de Recherches Géologiques et MinièresOrléansFrance

Personalised recommendations