Mechanics of Partially Saturated Porous Media

  • B. A. Schrefler
  • L. Simoni
  • Li Xikui
  • O. C. Zienkiewicz
Part of the International Centre for Mechanical Sciences book series (CISM, volume 311)


In the framework of the volume fraction theories, the governing equations of problems of mechanics of partially saturated porous media are derived. The use of general averaging principles provides the definition of averaged field variables, which allow the connection with experimental data. A finite element discretization of the governing equations is subsequently presented.


Porous Medium Pore Pressure Effective Stress Triaxial Test Mass Balance Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bedford, A. and Drumheller, D.S.: Theories of immiscible and structured mixtures, Int. J. Engng. Sci., 21(1983), 863–960.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Lewis, R.W. and Schrefler, B.A.: The finite element method in the deformation and consolidation of porous media, Wiley, Chichester 1987.Google Scholar
  3. 3.
    Simoni, L. and Schrefler, B.A.: F.E. solution of a vertically averaged model for regional land subsidence. Int. J. Num. Meth. Eng., 27(1989), 215–230.CrossRefMATHGoogle Scholar
  4. 4.
    Bear, J. and Bachmat, Y.: Transport phenomena in porous media — Basic equations, in: Fundamentals of transport phenomena in porous media (Bear, J. and Corapcioglu, M.Y. eds.), Nato ASI Series, Nijhoff, Dordrecht 1984, 5–61.CrossRefGoogle Scholar
  5. 5.
    Lemaitre, J. and Chaboche J.L.: Mecanique des materiaux solides, Dunod, Paris 1988.Google Scholar
  6. 6.
    Skempton, A.W.: Effective stress in soils, concrete and rocks, in Pore pressure and suction in soils, Butterworths London 1961, 4–16.Google Scholar
  7. 7.
    Bishop, A.W. and Blight, G.E.: Some aspects of effective stress in saturated and partly saturated soils, Geotechnique, 13(1963), 177–197.CrossRefGoogle Scholar
  8. 8.
    Aitchison, G.D. and Donald, I.B.: Effective stress in unsaturated soils, Proc. 2nd Australia-New Zealand Conf. Soil Mech., 1956, 192–199.Google Scholar
  9. 9.
    Morland, L.W.: A simple constitutive theory for a fluid saturated porous solid, Journal Geophys. Res. 77(1972), 890–900.CrossRefGoogle Scholar
  10. 10.
    Lloret, A., Alonso, E.E. and Gens, a A.: Undrained loading and consolidation analysis for unsaturated soils, Proc. Eur. Conf. Num. Meth. Geomech., 2, Stuttgart, 1986.Google Scholar
  11. 11.
    Zienkiewicz, O.C. and Shiomi, T.: Dynamic behaviour of saturated porous media: the general Biot’s formulation and its numerical solution, Int. J. Num. Anal. Meth. Geom., 8(1985), 71–96.CrossRefGoogle Scholar
  12. 12.
    Hassanizadeh, M. and Gray W.G.: General conservation equations for multiphase systems: 1. Averaging procedure, Adv. Water Resources, 2(1979), 131–144.CrossRefGoogle Scholar
  13. 13.
    Hassanizadeh, M. and Gray W.G.: General conservation equations for multiphase systems: 2. Mass, momenta, energy and entropy equations, Adv. Water Resources, 2(1979), 191–203.CrossRefGoogle Scholar
  14. 14.
    Hassanizadeh, M. and Gray W.G.: General conservation equations for multiphase systems: 3. Constitutive theory for porous media flow, Adv. Water Resources, 3(1980), 25–40.CrossRefGoogle Scholar
  15. 15.
    Marsden J.E. and Hughes, T.J.R.: Mathematical foundations of elasticity, Prentice-Hall, Englewood Cliffs, 1983.MATHGoogle Scholar
  16. 16.
    Li, X., Ding, D., Chan, A.H.C. and Zienkiewicz, O.C.: A coupled finite element method for the soil-pore fluid interaction problems with immiscible two-phase fluid flow, Proc. V-th Int. Symposium on Num. Meth. Eng., Lausanne, 1989.Google Scholar
  17. 17.
    Zienkiewicz, O.C. and Taylor, R.L.: Coupled problems — A simple time stepping procedure, Comm. Appl. Num. Meth., 1(1985), 233–239.CrossRefMATHGoogle Scholar
  18. 18.
    Zienkiewicz, O.C., Paul, D.K. and Chan, A.H.C.: Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems, Int. J. Num. Meth. Eng., 25(1988), 1093–1055.CrossRefGoogle Scholar
  19. 19.
    Narasimhan, T.N. and Witherspoon, P.A.: Numerical model for saturated-unsaturated flow in deformable porous media. 3 Applications, Water Resour. Res., 14(1978), 1017–1034.CrossRefGoogle Scholar
  20. 20.
    Schrefler, B.A. and Simoni, L.: A unified approach to the analysis of saturated-unsaturated elastoplastic porous media, in Numerical Methods in Geomechanics. Innsbruck 1988. (ed. G. Swoboda), Balkema, Rotterdam 1988.Google Scholar
  21. 21.
    Suquet, P.M.: Elements of homogenization for inelastic solid mechanics, in: Homogenization techniques for composite media (eds. E. Sanchez-Palencia and A. Zaoui), Springer-Verlag, Berlin 1987.Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • B. A. Schrefler
    • 1
  • L. Simoni
    • 1
  • Li Xikui
    • 2
  • O. C. Zienkiewicz
    • 2
  1. 1.Università di PadovaPadovaItaly
  2. 2.University College of SwanseaSwanseaUK

Personalised recommendations