A Survey of Constrained Delaunay Triangulation Algorithms for Surface Representation

  • L. De Floriani
  • E. Puppo
Part of the International Centre for Mechanical Sciences book series (CISM, volume 307)


The Constrained Delaunay Triangulation (CDT) is the basis for building surface models in a variety of applications. The paper introduces the notion of constrained Delaunay triangulation and presents its fundamental properties. The basic algorithms proposed in the literature for building a CDT are classified and briefly described.


Voronoi Diagram Delaunay Triangulation Simple Polygon Visibility Graph Constraint Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnhill, R.E.: Representation and Approximation of Surfaces, in: Mathematical Software III, (Ed. J.R. Rice), Academic Press Inc., 1977, 69–120.Google Scholar
  2. 2.
    Boissonnat, J.D.: Geometric Structures for Three Dimensional Shape Representation, ACM Transactions on Graphics, 3, 4 (1984) 266–286.CrossRefGoogle Scholar
  3. 3.
    Boissonnat, J.D., Faugeras, O.D., Le Bras-Mehlman, E.: Representing Stereo Data with the Delaunay Triangulation, in: Proceedings IEEE Robotics and Automation, Philadelphia, April 1988.Google Scholar
  4. 4.
    De Fioriani, L.: A Triangle Based Data Structure For Multiresolution Surface Representation, in: Image Analysis and Processing, (Ed. S. Levialdi, A. Restivo and V. Di Gesu’), Plenum Press, 1987 (in print).Google Scholar
  5. 5.
    Lawson, C.L.: Software for Cl surface interpolation, in: Mathematical Software III, (Ed. J.R. Rice), Academic Press Inc., 1977, 161–164.Google Scholar
  6. 6.
    Samet, H.: The Quadtree and Related Hierarchical Data Structures, Computing Surveys, 16,2 (1984), 187–260.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Babuska, I., Aziz, A.K.: On the Angle Condition in the Finite Element Method, SIAM J. Num. Anal., 13, 2 (1976), 214–226.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    De Fioriani, L., Falcidieno, B., Pienovi, C., Allen, D., Nagy, G.: A visibility-based model for terrain features, in: Proc. 2nd Int. Symp. on Spatial Data Handling, Seattle, July 1986, 235–250.Google Scholar
  9. 9.
    LLoyd, E.L.: On triangulations on a set of points in the plane, in: Proceedings IEEE 18th Annual Symposium on the Foundations of Computer Science, 1977, 228–240.Google Scholar
  10. 10.
    Lee, D.T.: Proximity and reachability in the plane, Ph.D. Dissertation, Coordinated Science Laboratory Report ACT-12, University of Illinois, Urbana, 1978.Google Scholar
  11. 11.
    De Floriani, L., Falcidieno, B., Pienovi, C.: A Delaunay-based representation of surfaces defined over arbitrarily-shaped domains, Computer Vision, Graphics and Image Processing, 32 (1985), 127–140.CrossRefMATHGoogle Scholar
  12. 12.
    Lee, D.T., Lin, A.K.: Generalized Delaunay Triangulation for Planar Graphs, Discrete and Computational Geometry, 1 (1986), 201–217.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: an Introduction, Springer Verlag, 1985.CrossRefGoogle Scholar
  14. 14.
    Wang, C.A., Schubert, L.: An optimal algorithm for constricting the Delaunay triangulation of a set of line segments, in: Proceedings Third ACM Symposium on Computational Geometry, Waterloo, June 1987, 223–232.CrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S., Preparata, F.P., Tarjan, R.E.: Triangulating a simple polygon, Information Processing Letters, 7, 4 (1978), 175–179.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lee, D.T., Preparata, F.P.: Location of a point in a planar subdivision and its applications, SIAM. J. Computing, 6, 3 (1977), 594–606.MathSciNetMATHGoogle Scholar
  17. 17.
    Tarjan, R.E., Van Wyk, C.J.: An O(n log log n) time algorithm for triangulating a simple polygon, SIAM Journal on Computing, 17 (1988), 143–178.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Chazelle, B.M., A Theorem on Polygon Cutting with Applications, in: Proceedings 23rd IEEE Annual Symp. on the Foundations of Computer Science, 1982, 339–349.Google Scholar
  19. 19.
    Lewis, B.A., Robinson, J.S.: Triangulation of planar regions with applications, The Computer Journal, 21, 4 (1979), 324–332.CrossRefGoogle Scholar
  20. 20.
    Chazelle, B.M., Incerpi, J.: Triangulating a Polygon by Divide-and-conquer, in: Proceedings 21st Allerton Conf. Commun. Control Comput., 1983, 447–456.Google Scholar
  21. 21.
    Lee, D.T., Schacter, B.J.: Two algorithms for constructing a Delaunay Triangulation, Int. Journal of Computer and Information Sciences, 9, 3 (1980), 219–242.CrossRefMATHGoogle Scholar
  22. 22.
    Bernai, J.: On Constructing Delaunay triangulations for sets Constrained by Line Segments, Tech. Rep. National Bureau of Standards, 1988.Google Scholar
  23. 23.
    Chew, L.P.: Constrained Delaunay Triangulations, in: Proceedings Third ACM Symposium on Computational Geometry, Waterloo, June 1987, 216–222.Google Scholar
  24. 24.
    De Floriani, L., Puppo, E.: Constrained Delaunay Triangulation for Multiresolution Surface Description, in: Proceedings Ninth International Conference on Pattern Recognition, Rome, November 1988, (in print).Google Scholar
  25. 25.
    De Floriani, L.: Surface Representation Based on Triangular Grids, The Visual Computer, 1987, 27–50.Google Scholar
  26. 26.
    Asano, T., Asano, T., Guibas, L., Hershberger, J., Imei, H.: Visibility of Disjoint Polygons, Algorithmica, 1 (1986), 45–63.CrossRefGoogle Scholar
  27. 27.
    Watson, D.F.: Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes, The Computer Journal, 24 (1981), 167–171.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1989

Authors and Affiliations

  • L. De Floriani
    • 1
  • E. Puppo
    • 1
  1. 1.Istituto di Matematica Applicata del CNRGenovaItaly

Personalised recommendations