A Comparison of Hierarchical Topologies for Mega-Micro-Computers

  • V. Cantoni
  • A. Griffini
  • L. Lombardi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 307)


In this paper several hierarchical network-centered architectures will be described. All these structures are characterized by a modularity which can be recoursively applied to realize multi-level computer architectures composed of homogeneous processors and interconnections. In particular, the analyzed families are: snowflakes, stars, trees, hypernets, and pyramids. All the solutions of these families will be compared on the basis of the complexity (increasing law and node degree), maximum diameter and average distance, load distribution among links, addressing algorithm and routing capability. At the end, some quantitative results are summarized.


Destination Node Leaf Node Binary Tree Hierarchical Level Basic Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Wittie, “Efficient message routing in mega-micro computer networks”, Proc. Third Symp. on Computer Architectures, 1976, pp. 136–140.Google Scholar
  2. 2.
    E. R. Caianiello, “Some remarks on organization and structures”, Biol. Cybernetics, Vol. 26, pp. 151, 1977CrossRefMATHGoogle Scholar
  3. 3.
    J. Becker, “Structural aspects of organizing parallel processing machines”, K. Ecker (HRSG.), Berichte des Instituts fur Informatik der Universitat Ciasthal, 1988.Google Scholar
  4. 4.
    M. Jeng, and H. J. Siegel, “Design and analysis of dynamic redundancy networks”, IEEE Trans. on Computers, Vol. 37, N. 9, pp. 1019–1029, 1988.CrossRefMATHGoogle Scholar
  5. 5.
    V. P. Kumar, and S. M. Reddy, “Augmented shuffle-exchange multi-stage interconnection networks”, Computer, Vol. 20, N. 6, pp. 30–40, 1987.CrossRefGoogle Scholar
  6. 6.
    G. A. De Biase, “Interconnection structures and parallel computing”, in Advances in Parallel Computing, D. J. Evans, Ed, Vol. 1, in press.Google Scholar
  7. 7.
    D. A. Reed, and H. D. Schwetman, “Cost-performance bounds for multi-micro computer networks”, IEEE Trans. on Computers, C-32, N. 1, pp. 83–95, 1983.CrossRefGoogle Scholar
  8. 8.
    R. A. Finkel, and M. H. Solomon, “Processor interconnection strategies”, IEEE Trans. on Computers, C-29, N. 5, pp. 360–371, 1980.CrossRefMATHGoogle Scholar
  9. 9.
    J. R. Goodman, and S. H. Sequin, “Hypertree: a multiprocessor interconnection topology”, IEEE Trans. on Comp., Vol. C-30, N. 12, pp. 923–933, 1981.CrossRefGoogle Scholar
  10. 10.
    C. H. Sequin, “Single chip computers, the new VLSI building blocks”, in Proc. VLSI Conf., Cal. Inst. of Technol., Pasadena, CA, 1979.Google Scholar
  11. 11.
    B. W. Arden, and H. Lee, “A regular network for multicomputer systems”, IEEE Trans. on Computers, Vol. C-31, N. 1, pp. 60–69, 1982.CrossRefGoogle Scholar
  12. 12.
    D. P. Agrawal, and V. K. Janakiram, “Evaluating the performance of multicomputer configurations”, Computer, Vol. 19, N. 5, pp. 23–37, 1986.Google Scholar
  13. 13.
    F. J. Meyer, and D. K. Pradhan, “Flip-Trees: Fault tolerant graphs with wide containers”, IEEE Trans. on Computers, Vol. 37, N. 4, pp. 472–478, 1988.CrossRefGoogle Scholar
  14. 14.
    K. Hwang, and J. Ghosh, “Hypemet: a communication-efficient architecture for constructing massively parallel Computers”, IEEE Trans. on Computers, Vol. C-36, N. 12, pp. 1450–1466, 1987.CrossRefGoogle Scholar
  15. 15.
    V. Cantoni and S. Levialdi, Eds., Pyramidal Systems for Computer Vision. Berlin, FRG: Spinger Verlag, 1986.MATHGoogle Scholar
  16. 16.
    A. Rosenfeld ed., Multiresolution Image Processing, Berlin, FRG: Springer Verlag, 1984.MATHGoogle Scholar
  17. 17.
    M. Ferretti, “Overlapping in Compact Pyramids”, in Pyramidal Systems for Computer Vision, V. Cantoni and S. Levialdi Eds., Springer Verlag, pp. 247–260, 1986.CrossRefGoogle Scholar
  18. 18.
    F. Devos, A. Merigot and B. Zadovique, “Integration d’un processeur cellulaire pour une architecture pyramidale de traitement d’image”, Revue Phys. Appl. 20, pp. 23–27, 1985.CrossRefGoogle Scholar
  19. 19.
    V. Cantoni, M. Ferretti, S. Levialdi, and R. Stefanelli, “PAPIA: Pyramidal Architecture for Parallel Image Analysis”, Proc. 7th Symp. on Computer Arithmetic, Urbana IL, pp. 237–242, 1985.Google Scholar
  20. 20.
    P. Mazumder, “Evaluation of on-chip static interconnection networks”, IEEE Trans. on Computers, Vol. C-36, N. 3, pp. 365–369, 1987.CrossRefGoogle Scholar
  21. 21.
    P. E. Danielsson, “Vices and Virtues of image parallel machines”, in Digital Image Analysis, S. Levialdi, editor, London: Pitman Publishing Limited, 1984, pp. 47–59.Google Scholar

Copyright information

© Springer-Verlag Wien 1989

Authors and Affiliations

  • V. Cantoni
    • 1
  • A. Griffini
    • 1
  • L. Lombardi
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaPaviaItaly

Personalised recommendations