On 2-D Digital Filter Design by the Adaptive Differential Correction Algorithm

  • G. Calvagno
Part of the International Centre for Mechanical Sciences book series (CISM, volume 307)


This work reports on a 2-D recursive digital filter design procedure based on magnitude squared approximation in minimax norm followed by stabilization. The magnitude squared function is designed with a new version of the adaptive differential-correction algorithm and the stabilization is obtained by means of spectral factorization. The proposed procedure has shown itself to be effective and robust after extensive testing. Several filter design examples illustrating its main features are presented.


Filter Design Spectral Factorization Constraint Point Recursive Filter Speech Signal Processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. K. Horn, “Robot vision”, Cambridge, Ma, MIT Press, 1986.Google Scholar
  2. [2]
    D. E. Dudgeon, R. M. Mersereau, “Multidimensional digital signal processing”, Englewood Cliffs, New Jersey, Prentice-Hall, 1984.MATHGoogle Scholar
  3. [3]
    D. E. Dudgeon, “Two-dimensional recursive filter design using differential correction”, IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-23, pp. 264–267, June 1975.CrossRefGoogle Scholar
  4. [4]
    G. V. Mendonca, A. Antoniou, A. N. Venetsanopoulos, “Design of two-dimensional pseudorotated digital filters satisfying prescribed specifications”, IEEE Trans. Circuits and Systems, vol. CAS-34, pp. 1–10, jan. 1987.CrossRefGoogle Scholar
  5. [5]
    M. P. Ekstrom, R. E. Twogood, J. W. Woods, “Two-dimensional recursive filter design — A spectral factorization approach”, IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-28, pp. 16–26, feb. 1980.CrossRefGoogle Scholar
  6. [6]
    E. H. Kaufman, S. F. McCormick, G. D. Taylor, “An adaptive differential-correction algorithm”, J. of Approx. Theory, pp. 197–221, march 1983.Google Scholar
  7. [7]
    P. Pistor, “Stability criterion for recursive filters”, IBM J. Res. Develop., pp. 59–71, jan. 1974.Google Scholar
  8. [8]
    M. P. Ekstrom, J. W. Woods, “Two-dimensional spectral factorization with application in recursive digital filtering”, IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-24, pp. 115–128, apr.1976.MathSciNetCrossRefGoogle Scholar
  9. [9]
    I. Barrodale, M. J. D. Powell, F. D. K. Roberts, “The differential correction algorithm for rational l approximation”, SIAM J. Num. Anal. 9, pp. 493–504, 1972.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J. L. Shanks, S. Treitel, J. H. Justice, “Stability and syntesis of two-dimensional recursive filters”, IEEE Trans. Audio Elettroacoust., vol. AU-20, pp. 115–128, June 1972.CrossRefGoogle Scholar
  11. [11]
    J. Le Roux, “2-D Bauer factorization”, IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-32, pp. 641–643, June 1984.CrossRefMATHGoogle Scholar
  12. [12]
    N. K. Bose, Y. Q. Shi, “2-D Wilson spectral factorization”, IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-36, pp. 125–128, jan. 1988.CrossRefGoogle Scholar
  13. [13]
    T. L. Marzetta, “Additive and multiplicative minimum-phase decomposition of 2-D rational power density spectra”, IEEE Trans. Circuits and Systems, vol. CAS-29, pp. 207–214, apr. 1982.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D. Marr, H. Hildreth, “Theory of edge detection”, Proc. Roy. Soc. London, vol. B207, pp. 187–217, 1980.CrossRefGoogle Scholar
  15. [15]
    J. S. Chen, A. Huertas, G. Medioni, “Fast convolution with Laplacian-of-Gaussian masks”, IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 584–590, July 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1989

Authors and Affiliations

  • G. Calvagno
    • 1
  1. 1.Università di PadovaPadovaItaly

Personalised recommendations