Nonlinear Concepts in the Analysis of Solids and Structures

  • I. St. Doltsinis
Part of the International Centre for Mechanical Sciences book series (CISM, volume 300)


The present treatise deals with computational methods for the analysis of solids and structures on the basis of the finite element approach. It comprises solution techniques for nonlinear structures and computer simulation methodologies for large deformation processes of solids.

Unsteady contact conditions and friction phenomena are accounted for, and the possibility of an adaptation of the discretisation mesh to the deformation of the solid is considered. Applications of the developed computer-based methodology are demonstrated in the field of nonlinear dynamics, metal forming processes and continuum damage mechanics.


Nodal Point Stress Resultant Void Volume Fraction Iteration Matrix Tangential Stiffness Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Argyris, H.-P. Mlejnek, Die Methode der Finiten Elemente, Band I, II, III ( Friedrich Vieweg u. Sohn, Braunschweig Wiesbaden, 1987 ).Google Scholar
  2. 2.
    W. Prager, Introduction to Mechanics of Continua (Ginn, Boston,1961).Google Scholar
  3. 3.
    O.C. Zienkiewicz, The Finite Element Method ( McGraw Hill, London, 1977 ).MATHGoogle Scholar
  4. 4.
    J. Argyris, K. Straub and Sp. Symeonidis, Static and dynamic stability of nonlinear elastic systems under non-conservative forces — natural approach, Comput. Meths. Appl. Mech. Engrg. 32 (1982) 59–83.MathSciNetMATHGoogle Scholar
  5. 5.
    J. Argyris, Continua and discontinua, Matrix Methods in Structural Mechanics, Opening address, Proceedings of the Conference held at Wright-Patterson Air Force Base, Ohio, 26–28 Oct. 1965.Google Scholar
  6. 6.
    E. Riks, An incremental approach to the solution of snapping and buckling problems, Int. J. Sol. Struct. 15 (1979) 529–551.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J. Argyris, H. Balmer, I.St. Doltsinis, I.plantation of a nonlinear capability on a linear software system, Comput. Meths. Appl. Mech. Engrg. 65 (1987) 267–291.CrossRefMATHGoogle Scholar
  8. 8.
    J.-L. Batoz and G. Dhatt, Incremental displacement algorithms for nonlinear problems, Int. J. Num. Meths. Eng. 14 (1979) 1262–1267.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M.A. Crisfield, A fast incremental/iterative solution procedure that handles “snap-through”, Computers & Structures 13 (1981) 55–62.CrossRefMATHGoogle Scholar
  10. 10.
    E. Ramm, Strategies for tracing the nonlinear response near limit points, in: W. Wunderlich, E. Stein and K.J. Bathe, eds., Nonlinear Finite Element Analysis in Structural Mechanics ( Springer, Berlin, 1981 ) 63–89.CrossRefGoogle Scholar
  11. 11.
    I. Fried, Orthogonal trajectory accession to the nonlinear equilibrium curve, Comput. Meths. Appl. Mech. Engrg. 47 (1984) 283–297.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J. Argyris and D.W. Scharpf, Berechnung vorgespannter Netzwerke, Bayerische Akademie der Wissenschaften, Sonderdruck 4 (1970) 25–58.MathSciNetGoogle Scholar
  13. 13.
    J. Argyris and P.C. Dunne, A simple theory of geometrical stiffness with applications to beam and shell problems, Second International Symposium on Computing Methods in Applied Sciences and Engineering, Versailles, France, Dec. 15–19, 1975, ISD Report No. 183, Stuttgart, 1975.Google Scholar
  14. 14.
    H.A. Balmer and I.St. Doltsinis, An account of the geometrically nonlinear analysis of structures with ASKA, ICA Report for Saab-Scania, Stuttgart, 1986.Google Scholar
  15. 15.
    J. Argyris, P.C. Dunne, G.A. Malejannakis and E. Schelkle, A simple triangular facet shell element with applications to linear and nonlinear equilibrium and elastic stability problems, Comput. Meths. Appl. Mech. Engrg. 10 (1977) 371–403.CrossRefMATHGoogle Scholar
  16. 16.
    J. Argyris, An excursion into large rotations, Comput. Meths. Appl. Mech. Engrg. 32 (1982) 85–155.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. Hill, Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids 7 (1959) 209–225.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    E.H. Lee, Elasto-plastic deformation at finite strain, J. Appl. Mech. 36 (1961) 1–6.CrossRefGoogle Scholar
  19. 19.
    A.E. Green and P.M. Naghdi, A general theory of an elastic-plastic continuum, Arch. Rat. Mech. Ann. 18 (1965) 251–281.MathSciNetMATHGoogle Scholar
  20. 20.
    J. Argyris and I.St. Doltsinis, On the large strain inelastic analysis in natural formulation. Part I. Quasistatic problems, Comput. Meths. Appl. Mech. Engrg. 20 (1979) 213–251; Part II. Dynamic Problems, Comput. Meths. Appl. Mech. Engrg. 21 (1980) 91–128.Google Scholar
  21. 21.
    J. Argyris, I.St. Doltsinis, P.M. Pimenta and H. Wüstenberg, Thermomechanical response of solids at high strains — natural approach, Comput. Meths. Appl. Mech. Engrg. 32 (1982) 3–57.CrossRefMATHGoogle Scholar
  22. 22.
    H. Balmer, I.St. Doltsinis and M. König, Elastoplastic and creep analysis with the ASKA program system, Comput. Meths. Appl. Mech. Engrg. 3 (1974) 87–104.CrossRefGoogle Scholar
  23. 23.
    J. Argyris and I.St. Doltsinis, On the integration of inelastic stress-strain relations. Part 1: Foundations of method; Part 2: Developments of method, Res Mech. Lett. 1 (1981) 343–355.Google Scholar
  24. 24.
    T.J.R. Hughes, Numerical implementation of constitutive models: Rate-independent deviatoric plasticity, in: S. Nemat-Nasser et al., eds., Theoretical Foundation of Large-Scale omputations of Nonlinear Material Behavior ( Martinus Nijhoff Publishers, Dordrecht, 1984 ).Google Scholar
  25. 25.
    J. Argyris, I.St. Doltsinis and M. Kleiber, I.cremental formulation in nonlinear mechanics and large strain elasto-plasticity — natural approach. Part II, Comput. Meths. Appl. Mech. Engrg. 14 (1978) 259–294.CrossRefMATHGoogle Scholar
  26. 26.
    J. Argyris and I.St. Doltsinis, A primer on superplasticity in natural formulation, Comput. Meths. Appl. Mech. Engrg. 46 (1984) 83–131.CrossRefMATHGoogle Scholar
  27. 27.
    J. Argyris, I.St. Doltsinis, H. Fischer, H. Wüstenberg, `Ta iravra pa’, Comput. Meths. Appl. Mech. Engrg. 51 (1985) 289–362.Google Scholar
  28. 28.
    O.C. Zienkiewicz, Flow formulation for numerical solution of forming processes, in: J.F.T. Pittman et al., eds., Numerical Analysis of Forming Processes ( Wiley. Chichester, 1984 ) 1–44.Google Scholar
  29. 29.
    J. Argyris, I.St. Doltsinis and J. Luginsland, Three-dimensional thermomechanical analysis of metal forming processes, Internat. Workshop on Simulation of Metal Forming Processes by the Finite Element Method, 3rd June 1985, Stuttgart, Proceedings (Springer, 1986 ).Google Scholar
  30. 30.
    R.L. Taylor and O.C. Zienkiewicz, Mixed finite element solution of fluid flow problems, in: R.H. Gallagher et al., eds., Finite Elements in Fluids, Vol. 4 ( Wiley, New York, 1982 ).Google Scholar
  31. 31.
    J. Argyris and I.St. Doltsinis, Computer simulation of metal forming processes, Conf. on Numerical Methods in Industrial Forming Processes, Gothenburg, 2529 August 1986, Proceedings.Google Scholar
  32. 32.
    I.St. Doltsinis, J. Luginsland and S. Nölting, Some developments in the numerical simulation of metal forming processes, Engineering Computations, 4 (1987) 266–280.CrossRefGoogle Scholar
  33. 33.
    J.T. Oden and J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Comput. Meths. Appl. Mech. Engrg. 52 (1985) 527–634.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    I. Babuska et al., eds., Accuracy estimates and adaptive refinements in finite element computations ( Wiley, New York, 1986 ).MATHGoogle Scholar
  35. 35.
    N. Kikuchi, Adaptive grid-design methods for finite element analysis, Comput. Meths. Appl. Mech. Engrg. 55, (1986) 129–160.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    O.C. Zienkiewicz, Y.C. Liu and G.C. Huang, Error estimation and adaptivity in flow formulation for forming problems, Int. J. Num. Meths. Engrg., 25 (1988) 23–42.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    J. Argyris, H.A. Balmer, I.St. Doltsinis and A. Kurz, Computer simulation of crash phenomena, Int. J. Num. Meths. Engrg., 22 (1986) 497–519.CrossRefMATHGoogle Scholar
  38. 38.
    N.M. Newmark, A method of computation for structural dynamics, Proc. ASCE 85 (1959) 67–94.Google Scholar
  39. 39.
    J. Argyris, P.C. Dunne and Th. Angelopoulos, Dynamic response by large step integration, Earthquake Eng. Str. Dyn., 2 (1973) 185–203.MathSciNetCrossRefGoogle Scholar
  40. 40.
    I.St. Doltsinis, Diskretisierungsmethoden für zeitabhängige Vorgänge, Workshop `Diskretisierungen in der Kontinuumsmechanik’, Physikzentrum Bad Honnef, 23–26 Sept. 1985, Proceedings.Google Scholar
  41. 41.
    J. Argyris and I.St. Doltsinis, On the natural formulation and analysis of large deformation coupled thermomechanical problems, Comput. Meths. Appl. Mech. Engrg. 25 (1981) 195–253.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    J. Argyris, I.St. Doltsinis, F. Kneese and H. Wüstenberg, Numerik thermomechanischer Vorgänge, ICA Report No. 1, Stuttgart, 1984. Forschung im Ingenieurwesen 635 (1986).Google Scholar
  43. 43.
    K.A. Padmanabhan and G.J. Davies, Superplasticity ( Springer, Berlin, 1980 ).CrossRefGoogle Scholar
  44. 44.
    A.K. Ghosh and C.H. Hamilton, Mechanical behaviour and hardening characteristics of a superplastic Ti-6A1–4V alloy, Metallurgical Trans. A, 10A (1979) 699–706.CrossRefGoogle Scholar
  45. 45.
    I.St. Doltsinis and S. Nölting, Numerische Simulation der superplastichen Umformung eines Schaltkastens, ICA Report for Messerschmitt-Bölkow-Blohm GmbH, Transport-u. Verkehrsflugzeuge, 1987.Google Scholar
  46. 46.
    J.L. Bluhm and R.J. Morrissey, Fracture of a tensile specimen, Proc. 1st Internat. Conf. Fract., 3 (1966)Google Scholar
  47. 47.
    A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth–I. Yield criteria and flow rules for porous ductile media, J. Engrg. Materials Technol. 99 (1977) 2–15.CrossRefGoogle Scholar
  48. 48.
    A.L. Gurson, Porous rigid-plastic materials containing rigid inclusions — yield function, plastic potential and void nucleation, Fracture 1977, 2, ICF 4 (1977).Google Scholar
  49. 49.
    I.St. Doltsinis, Some considerations on elastoplastic solids with damage, 7th Int. Conf. on Comput. Meths. in Appl. Science and Engrg., Dec. 9–13 1985, Versailles, France, Proceedings (North-Holland, Amsterdam, 1987 ).Google Scholar
  50. 50.
    V. Tvergaard, Ductile fracture by cavity nucleation between larger voids, The Danish Center for Applied Mathematics and Mechanics, Report No. 210 (May 1981).Google Scholar
  51. 51.
    V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, The Danish Center for Applied Mathematics and Mechanics, Report No. 264 (June 1983).Google Scholar
  52. 52.
    P. Perzyna, On constitutive modelling of dissipative solids for plastic flow, instability and fracture, in: A. Sawczuk and G. Bianchi, eds., Plasticity Today — Modelling, Methods and applications (Elsevier Applied Science Publications, 1985 )Google Scholar
  53. 53.
    R.J. Green, A plasticity theory for porous solids, Int. J. Mech. Sci. 14 (1972) 215–224.CrossRefMATHGoogle Scholar
  54. 54.
    G. Rousselier, K. Phan Ngoc and G. Mottet, Elastic-plastic constitutive relations including ductile fracture damage, 7th Internat. Conf. Struct. Mech. Reactor Technology, 1983, Paper G/F No. 1/3.Google Scholar
  55. 55.
    J.-C. Devaux, F. Mudry, G. Rousselier and A. Pineau, An experimental program for the validation of local ductile fracture criteria using axisymmetrically cracked bars and compact tension specimens, Engrg. Fract. Mech. 21 (1985) 273–283.CrossRefGoogle Scholar
  56. 56.
    Institut far Bildsame Formgebung, RWTH Aachen, Private Communication (1985).Google Scholar

Copyright information

© Springer-Verlag Wien 1989

Authors and Affiliations

  • I. St. Doltsinis
    • 1
  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations