Advertisement

On Asymptotic Error Estimates for Combined Bem and Fem

  • W. L. Wendland
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 301)

Abstract

As can be seen from several recent engineering applications, the coupling of finite elements with boundary elements plays an increasingly important role in computational methods. This paper presents a survey on the corresponding current mathematical analysis in the framework of asymptotic convergence and error estimates. The presented analysis covers classical coupling with boundary element Galerkin methods as for the Laplacian and corresponding variants with faster mesh refinement of the boundary elements on the coupling boundary or — alternatively — of the finite elements which already apply to a large class of elliptic boundary value problems. Further we present recent symmetric Galerkin formulations for general strongly elliptic boundary value problems in accordance with the Hellinger-Reissner principle. For two-dimensional problems we present some new results for boundary element collocation on the coupling boundary.

Keywords

Boundary Element Boundary Element Method Boundary Integral Equation Elliptic Boundary Asymptotic Convergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold D.N. and Wendland W.L. (1983), “On the asymptotic convergence of collocation methods”, Math. Comp. 41, pp. 349–381.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Arnold D.N. and Wendland W.L. (1985), “The convergence of spline collocation for strongly elliptic equations on curves”, Numer. Math. 47, pp. 317–341.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Atluri S.N. and Zhang J.-D. (1986), “A boundary/interior element method for quasi-static and transient response analyses of shallow shells”, Preprint, Centre Adv. Comp. Mech., Civil Engrg., Georgia Tech., Atlanta GA 30332, USA.Google Scholar
  4. 4.
    Atluri S.N., Zhang J.-D. and O’Donoghue P.E. (1986), “Analysis and control of finite deformations of plates and shells: Formulations and interior boundary element algorithms”, Preprint, Centre Adv. Comp. Mech., Civil Engrg., Georgia Tech., Atlanta GA 30322, USA.Google Scholar
  5. 5.
    Aubin J.P. (1972), Elliptic Boundary Value Problems, Wiley-Intersc. (New York).MATHGoogle Scholar
  6. 6.
    Aziz A.K. and Kellog R.B. (1981), “Finite element analysis of a scattering problem”, Math. Comp. 37, pp. 261–272.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Babuska I. (1970), “Error bounds for finite element method”, Numer. Math. 16, pp. 322–333.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Babuska I. and Aziz A.K. (1972), “Survey lectures on the mathematical foundations of the finite element method”, in The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, Aziz A.K., ed., Academic Press (New York), pp. 3–359.Google Scholar
  9. Babuska I. and Aziz A.K. (1972), “Survey lectures on the mathematical foundations of the finite element method”, in The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, Aziz A.K., ed., Academic Press (New York), pp. 3–359.Google Scholar
  10. 9.
    Beer G. and Meek J.L. (1981), “The coupling of boundary and finite element methods for infinite domain problems in elasto-plasticity”, in Boundary Element Methods III, Brebbia C.A., ed., Springer-Verlag (Berlin, Heidelberg, New York), pp. 575–591.CrossRefGoogle Scholar
  11. 10.
    Bettess P., Kelly D.W. and Zienkiewicz O.C. (1977), “The coupling of the finite element method and boundary solution procedures”, Int. J. Numer. Math. Engrg. 11, pp. 355–375.CrossRefMATHMathSciNetGoogle Scholar
  12. 11.
    Bettess P., Kelly D.W. and Zienkiewicz O.C. (1979), “Marriage à la mode. The best of both worlds (Finite elements and boundary integrals)”, in Energy Methods in Finite Element Analysis, Glowinski R., Rodin E.Y. and Zienkiewicz O.C, eds., J. Wiley (Chichester).Google Scholar
  13. 12.
    Bielak J. and MacCamy R. (1984), “Mixed variational FEM for interface problems”, in Unification of Finite Element Methods, Kardestuncer H., ed., Elsevier North Holland (Amsterdam), pp. 149–165.CrossRefGoogle Scholar
  14. 13.
    Brady B.H.G., Gulthard M.A. and Lemos J.V. (1984), “A hybrid distinct element-boundary element method for semi-infinite and infinite body problems”, in Computational Techniques and Applications CTAC-83, Noye J. and Fletcher C, eds., Elsevier, North-Holland (Amsterdam), pp. 307–316.Google Scholar
  15. 14.
    Bramble J.H. and Pasciak J.E. (1987), “A boundary parametric approximation to the linearized scalar potential magnetostatic field problem”, BNL 35476 Internal Report AMD 959, Cornell Univ. (Ithaca).Google Scholar
  16. 15.
    Brebbia CA., Telles J.C.F. and Wrobel L.C. (1984), Boundary Element Techniques, Springer-Verlag (Berlin).CrossRefMATHGoogle Scholar
  17. 16.
    Brezzi F. and Johnson C. (1979), “On the coupling of boundary integral and finite element methods”, Calcolo 16, pp. 189–201.CrossRefMATHMathSciNetGoogle Scholar
  18. 17.
    Brezzi F., Johnson C. and Nedelec J.C. (1978), “On the coupling of boundary and finite element methods”, in IVth LIBLICE Conf., Basic Problems of Numerical Analysis (Pilsen).Google Scholar
  19. 18.
    Burnet-Fauchez M. (1987), “The use of boundary element-finite element coupling method in electrical engineering”, in Boundary Elements IX, Vol. 3, Brebbia C.A., Wendland W.L., and Kuhn G., eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo) pp. 611–624.Google Scholar
  20. 19.
    Céa J. (1964), “Approximation variationelle des Problèmes aux limites”, Ann. Inst. Fourier (Grenoble)14, pp. 345–444.CrossRefMATHGoogle Scholar
  21. 20.
    Cen Z., Wang X. and Du Y. (1986), “A coupled finite element-boundary element method for three-dimensional elastoplasticity analysis”, in Boundary Elements, Du Quighua, ed., Pergamon Press (Oxford) pp. 311–318.Google Scholar
  22. 21.
    Chen G.R. and Qiau J. (1986), “The coupling of BEM and FEM used in stress analysis of the structure on the half infinite foundation”, in Boundary Elements, Du Quinghua, ed., Pergamon Press (Oxford) pp. 689–696.CrossRefGoogle Scholar
  23. 22.
    Ciarlet P.G. (1978), The Finite Element Method for Elliptic Problems, North-Holland (Amsterdam, New York, Oxford).MATHGoogle Scholar
  24. 23.
    Colton D. and Kress R. (1983), Integral Equation Methods in Scattering Theory, John Wiley & Son (New York).MATHGoogle Scholar
  25. 24.
    Costabel M. (1984), “Starke Elliptiziat von Randintegraloperatoren erster Art”, Habilitationschrift, Technische Hochschule Darmstadt, Germany.Google Scholar
  26. 25.
    Costabel M. (1987) “Symmetric methods for the coupling of finite elements and boundary elements”, in Boundary Elements IX, Vol. 1, Brebbia C.A., Wendland W.L. and Kuhn G., eds., Springer-Verlag (Berlin, Heidelberg) pp. 411–420.Google Scholar
  27. 26.
    Costabel M. (1987) “Principles of boundary element methods”, Computer Physics Reports 6, pp. 243–274.CrossRefMathSciNetGoogle Scholar
  28. 27.
    Costabel M. (1985/88) “Boundary integral operators on Lipschitz domains: Elementary results”, (Preprint 898 Math. TH Darmstadt), SIAM J. Math. Anal., to appear.Google Scholar
  29. 28.
    Costabel M. and Stephan E.P. (1987), “A Galerkin method for a three-dimensional time-dependent interface problem in electromagnetics”, in Electromag-nctismc- Magneto statique, Problems non linéaires appliqués, Lecture Notes, INRIA (Rocquencourt).Google Scholar
  30. 29.
    Costabel M. and Stephan E.P. (1988) “Coupling of finite elements and boundary elements for transmission problems of elastic waves in R3 ”, in Advanced Boundary Element Methods, Cruse T.A., ed., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo) pp. 117–124.CrossRefGoogle Scholar
  31. 30.
    Costabel M. and Stephan E.P. (1988), “Coupling of finite elements and boundary elements for inhomogeneous transmission problems in R3 “, in: The Mathematics of Finite Elements and Applications VI, Whiteman J., ed., Academic Press (London), to appear.Google Scholar
  32. 31.
    Costabel M. and Stephan E.P. (1986/88), “Duality estimates for the numerical solution of integral equations”, (Preprint 1027 TH Darmstadt), to appear.Google Scholar
  33. 32.
    Costabel M. and Wendland W.L. (1986), “Strong ellipticity of boundary integral operators”, J. Reine Angew. Math. 372, pp. 34–62.MATHMathSciNetGoogle Scholar
  34. 33.
    Dendrou B.A. and Dendrou S.A. (1981), “A finite element — boundary integral scheme to simulate rock-effects on the liner of an underground intersection”, in Boundary Element Methods, Brebbia C.A., ed., Springer-Verlag (Berlin, Heidelberg, New York), pp. 592–608.CrossRefGoogle Scholar
  35. 34.
    Du Y. and Cen Z.Z. (1986), “A hybrid or mixed approach for the combination of BEM and FEM technique”, in Proc. Int. China-American Workshop on Finite Element Methods, (Chengdu, China).Google Scholar
  36. 35.
    Du Q., Yao Z. and Cen Z.Z. (1987), “On some coupled problems in mechanics by the coupling technique of boundary element and finite element”, in Bound-ary Elements IX, Vol. 1, Brebbia C.A., Wendland W.L. and Kuhn G., eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo) pp. 421–434.Google Scholar
  37. 36.
    Drapalik V. and Janovsky V. (1984), On a Potential Problem with Incident Wave as a Field Source, Tech. Report KNM-068/84, Dept. Numer. Anal. Charles University (Prague).Google Scholar
  38. 37.
    Feng K. (1983), “Finite element method and natural boundary reduction”, in Proc. Intern. Congress Math., August 16–24, (Warsaw), pp. 1439–1453.Google Scholar
  39. 38.
    Feng K., Yu De Hao (1983), “Canonical integral equations of elliptic boundary value problems and their numerical solutions”, in Proc. China-France Symp. On The Finite Element Method, April 1982, Beijing, Gordon and Breach (New York), pp. 211–215.Google Scholar
  40. 39.
    Flassig U. (1984), Das 2. Fundamentalproblem der ebenen Elastizität, Diplom Thesis, Technical University Darmstadt (Darmstadt, West Germany).Google Scholar
  41. 40.
    Grannell J.J. (1987) “On simplified hybrid methods for coupling of finite elements and boundary elements”, in Boundary Elements IX, Vol.1, Brebbia CA., Wendland W.L., and Kuhn G., eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo) pp. 447–460.Google Scholar
  42. 41.
    Han H. (1988), “A new class of variational formulations for the coupling of finite and boundary element methods”, (Preprint Univ. Maryland, College Park, U. S. A.) .Google Scholar
  43. 42.
    Hebeker F.K. (1988), “A boundary element method for Stokes equations in 3-D exterior domains”, in The Mathematics of Finite Elements and Applications VI, Whiteman J.R., ed., Academic Press (London), pp. 257–263.Google Scholar
  44. 43.
    Helfrich H.P. (1981), “Simultaneous approximation in negative norms of arbitrary order”, RAIRO Numer. Anal 15, pp. 231–235.MATHMathSciNetGoogle Scholar
  45. 44.
    Herrera I. (1985), “Unified approach to numerical methods, Part II: Finite elements, boundary methods, and their coupling”, Numer. Methods Part. Diff. Equs. 1, pp. 159–186.CrossRefMATHMathSciNetGoogle Scholar
  46. 45.
    Hildebrandt St. and Wienholtz E. (1964), “Constructive proofs of representation theorems in separable Hilbert space”, Comm. Pure Appl. Math. 17, pp. 369–373.CrossRefMATHMathSciNetGoogle Scholar
  47. 46.
    Hsiao G.C., Kleinman R.E. and Shuetz L.S. (1988), “On variational formulations of boundary value problems for fluid-solid interactions” in: Elastic Wave Propagation, to appear.Google Scholar
  48. 47.
    Hsiao G.C. and Porter J.F. (1986), “A hybrid method for an exterior boundary value problem based on asymptotic expansion, boundary integral equation and finite element approximations”, in Innovative Numerical Methods in Engineering, Shaw R.P. et al, eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo), pp. 83–88.Google Scholar
  49. 48.
    Hsiao G.C. and Porter J.F. (1986), “The coupling of BEM and FEM for exterior boundary value problems”, in Boundary Elements, Du Qinghua, ed., Pergamon Press (Oxford), pp. 77–86.CrossRefGoogle Scholar
  50. 49.
    Hsiao G.C. and Porter J.F. (1988), “The coupling of BEM and FEM for the two-dimensional viscous flow problem”, Applicable Anal. 27, pp. 79–108.CrossRefMATHMathSciNetGoogle Scholar
  51. 50.
    Hsiao G.C. and Wendland W.L. (1981), “The Aubin-Nitsche lemma for integral equations”, J. Integral Equations 3, pp. 299–315.MATHMathSciNetGoogle Scholar
  52. 51.
    Hsiao G.C. and Wendland W.L. (1985), “On a boundary integral method for some exterior problems in elasticity”, Procedings of Tbilisi University, UDK 539. 3, Math. Mech. Astron. 257, pp. 31–60.MathSciNetGoogle Scholar
  53. 52.
    Johnson J. and Nedelec J.C. (1980), “On coupling of boundary integral and finite element methods”, Math. Comp. 35, pp. 1063–1079.CrossRefMATHMathSciNetGoogle Scholar
  54. 53.
    Kobayashi S. and Mori K. (1986), “Three-dimensional dynamic analysis of soil-structure interactions by boundary integral equations — finite element combined method”, in Innovative Numerical Methods in Engineering, Shaw R.P. et al, eds., Springer Verlag (Berlin, Heidelberg, New York, Tokyo), pp. 613–618.Google Scholar
  55. 54.
    Kobayashi S., Nishimura N. and Mori K. (1986), “Applications of a boundary element-finite element combined method to three- dimensional viscoelastody-namic problems”, in Boundary Elements, Du Qinghua, ed., Pergamon Press (Oxford), pp. 67–76.CrossRefGoogle Scholar
  56. 55.
    Lee C.S. and Yoo Y.M. (1985), “Investigation of the boundary element method for engineering application”, in Boundary Elements VII, Brebbia C. and Maier G., eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo), pp. 14.93–14.107.Google Scholar
  57. 56.
    Li Hong-Bao, Han Guo-Ming, Mang H.A. and Torzicky P.A. (1986), “A new method for the coupling of finite element and boundary element discretized subdomains of elastic bodies”, Comput. Methods Appl. Mech. Engrg. 54, pp. 161–185.CrossRefMATHGoogle Scholar
  58. 57.
    Lions J.L. and Magenes E. (1972), Non-Homogeneous Boundary Value Problems and Applications Vol. I, Springer-Verlag (Berlin, Heidelberg, New York).CrossRefMATHGoogle Scholar
  59. 58.
    Liu G. and Wang G. (1986), “A boundary element-finite element method of analysis for viscoelastic stress in tunnels”, in Boundary Elements, Du Qinghua, ed., Pergamon Press (Oxford) pp. 593–600.Google Scholar
  60. 59.
    MacCamy R.C. and Marin S.P. (1980), “A finite element method for exterior interface problems”, Internat. J. Math and Math. Sci. 3, pp. 311–350.CrossRefMATHMathSciNetGoogle Scholar
  61. 60.
    MacCamy R.C. and Suri M. (1987), “A time dependent interface problem for two-dimensional eddy currents”, Quart. Appl. Math. 44, pp. 675–690.MATHMathSciNetGoogle Scholar
  62. 61.
    Mackerle J. and Andersson T. (1984), “Boundary element software in engineering”, Advances in Eng. Software 6, pp. 66–102.CrossRefGoogle Scholar
  63. 62.
    Maier G. and Polizzotto C. (1987), “A Galerkin approach to boundary element elastoplastic analysis”, Comput. Methods Appl. Mech. Engrg. 60, pp. 175–194.CrossRefMATHGoogle Scholar
  64. 63.
    Mang H.A., Chen Z.Y. and Torzicky P. (1988), “On the symmetricability of coupling matrices for BEM-FEM discretizations of solids”, in Advanced Boundary Element Methods, Cruse T.A., ed., Springer-Verlag (Berlin, Heidelberg) pp. 241–248.CrossRefGoogle Scholar
  65. 64.
    Mansur W.J. and Marques E. (1988), “Coupling of boundary and finite element methods: application to potential problems”, Engrg. Analysis, to appear.Google Scholar
  66. 65.
    Margulies M. (1981), “Combination of the boundary element and finite element methods”, in Progress in Boundary Element Methods 1 , Brebbia C.A., ed., Pentech Press (London, Plymouth), pp. 258–288.Google Scholar
  67. 66.
    Mikhlin S.G. and Prössdorf S. (1986), Singular Integral Operators, Springer-Verlag (Berlin, Heidelberg, New York, Tokyo).CrossRefGoogle Scholar
  68. 67.
    Mikhlin S.G. (1965), The Problern of the Minimum of a Quadratic Functional, Holden Day Inc. (San Fransisco)(Orig. 1952, Leningrad Moscow).Google Scholar
  69. 68.
    Nedelec J.C. (1976), Curved finite element methods for the solution of singular integral equations on surfaces in R3”, Comput. Methods Appl. Mech. Engrg. 8, pp. 61–80.CrossRefMATHMathSciNetGoogle Scholar
  70. 69.
    Nedelec J.C. (1977), Approximation des Equations Integrales en Mécanique et en Physique, Lecture Notes, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France.Google Scholar
  71. 70.
    Nitsche J.A. (1968), “Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens”, Numer. Math. 11, pp. 346–348.CrossRefMATHMathSciNetGoogle Scholar
  72. 71.
    Nitsche J.A. (1968), “Zur Konvergenz des Ritzschen Verfahrens und der Fehlerquadratmethode I”, Internat. Schriftenreihe Numer. Math. 8, pp. 97–103.MathSciNetGoogle Scholar
  73. 72.
    Ohtsu M. (1985), “BEM formulation based on the variational principle and coupling analysis with FEM”, in Boundary Elements VII, Brebbia C. and Maier G., eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo), pp. 11.13.–11.22.Google Scholar
  74. 73.
    Petersen B.E. (1983), Introduction to the Fourier Transform and Pseudo-Differential Operators, Pitman (Boston, London, Melbourne).MATHGoogle Scholar
  75. 74.
    Polizzotto C. (1987), “A symmetric-definite BEM formulation for the elasto-plastic rate problem”, in Boundary Elements IX, Vol 2, Brebbia CA., Wendland W.L. and Kuhn G., eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo) pp. 315–334.Google Scholar
  76. 75.
    Polizzotto, C. (1988), “A consistent formulation of the BEM within elasto-plasticity” in Advanced Boundary Element Methods, Cruse T.A., ed., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo), pp. 315–324.CrossRefGoogle Scholar
  77. 76.
    Polizzotto C. (1988), “An energy approach to the boundary element method. Part I: Elastic solids; Part II: Elastic-plastic solids. To appear.Google Scholar
  78. 77.
    Protopsaltis B. (1985), Rand-Integralgleichungen für dünne elastische Platten und ihre Kopplung mit finiten Elementen, Doctoral Thesis, Technical University Munich (München, West Germany).Google Scholar
  79. 78.
    Riesz F. and Sz.- Nagy B. (1956), Vorlesungen über Funktionalanalysis, Dt. Verlag d. Wiss. (Berlin).MATHGoogle Scholar
  80. 79.
    Schmidt G. (1984), “The convergence of Galerkin and collocation methods with splines for pseudodifferential equations on closed curves”, Z. Anal. Anwendungen 3, pp. 371–384.MATHMathSciNetGoogle Scholar
  81. 80.
    Schnack E. (1985), “Stress analysis with a combination of HSM and BEM”, The Mathematics of Finite Elements and Applications V, Whiteman J., ed., Academic Press (London), pp. 273–282.CrossRefGoogle Scholar
  82. 81.
    Sequeira A. (1983), “The coupling of boundary integral and finite element methods for the bidimensional exterior steady Stokes problem”, Math. Methods Appl. Sci. 5, pp. 356–375.CrossRefMATHMathSciNetGoogle Scholar
  83. 82.
    Sequeira A. (1986), “On the computer implementation of a coupled boundary and finite element method for the bidimensional exterior steady Stokes problem”, Math. Methods Appl. Sci. 8, pp. 117–133.CrossRefMATHMathSciNetGoogle Scholar
  84. 83.
    Shao K. (1985), “Axi-symmetric eddy current problems by a coupled FE-BE method”, Boundary Elements VII, Brebbia C. and Maier G., eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo), pp. 2.65–2.76.Google Scholar
  85. 84.
    Shaw R. and Falby W. (1978), “FEBIE — a combined finite element — boundary integral equation approach”, Comp. Fluids 6, pp. 153–160.CrossRefMATHMathSciNetGoogle Scholar
  86. 85.
    Stephan E. and Wendland W.L. (1976), “Remarks to Galerkin and least squares methods with finite elements for general elliptic problems”, Manuscripta Geo-daetica 1, pp. 93–123.MATHGoogle Scholar
  87. 86.
    Stummel F. (1969), Rand- und Eigenwertaufgaben in Sobolevschen Räumen, Lecture Notes in Math. 102, Springer-Verlag (Berlin, Heidelberg, New York).Google Scholar
  88. 87.
    Stummel F. (1971), “Diskrete Konvergenz linearer Operatoren I und II”, Math. Zeitschr. 120, pp. 231–264.CrossRefMATHMathSciNetGoogle Scholar
  89. 88.
    Swoboda G.A., Mertz W.G. and Beer G. (1986), “Application of coupled FEM-BEM analysis for three-dimensional tunnel analysis”, in Boundary Elements, Du Qinghua, ed., Pergamon Press (Oxford), pp. 537–550.CrossRefGoogle Scholar
  90. 89.
    Taylor M.E. (1981) Pseudodifferential Operators, Princeton Univ. Press (Princeton, N.J.).MATHGoogle Scholar
  91. 90.
    Wendland W.L. (1983), “Boundary element methods and their asymptotic convergence”, in Theoretical Acoustics and Numerical Treatment, Filippi P., ed., CISM Courses and Lectures No. 277, Springer-Verlag (Wien, New York). pp. 135–216.Google Scholar
  92. 91.
    Wendland W.L. (1986), “On asymptotic error estimates for the combined boundary and finite element method”, in Innovative Numerical Methods in Engineering, Shaw R. et al., eds., Springer-Verlag (Berlin, Heidelberg, New York, Tokyo), pp. 55–70.Google Scholar
  93. 92.
    Wendland W.L. (1987), “Strongly elliptic boundary integral equations”, in The State of the Art in Numerical Analysis, Iserles A. and Powell M., eds., Clarendon Press (Oxford), pp. 511–561.Google Scholar
  94. 93.
    Wu J.C. (1984), “Fundamental solutions and numerical methods in fluids”, Int. J. Numer. Methods Fluids 4, pp. 185–201.CrossRefMATHGoogle Scholar
  95. 94.
    Yu D.-H. (1983), “Coupling canonical boundary element method with FEM to solve a harmonic problem over a cracked domain”, J. Comp. Math. 1, pp. 195–202.MATHGoogle Scholar
  96. 95.
    Yu D.-H. (1984), “Canonical boundary element method for plane elasticity problems”, J. Comp. Math. 2, pp. 180–189.MATHGoogle Scholar
  97. 96.
    Yu D.-H. (1985), “A system of plane elasticity canonical integral equations and its application”, J. Comp. Math. 3, pp. 219 – 227.MATHGoogle Scholar
  98. 97.
    Zi-Cai Li and Guo-Ping Liang (1983), “On the simplified hybrid-combined method”, Math. Comp. 41, pp. 13–25.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • W. L. Wendland
    • 1
  1. 1.Universität StuttgartStuttgartGermany

Personalised recommendations