Advertisement

Boundary Element Technique in Elastostatics and Linear Fracture Mechanics

Theory and Engineering Applications
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 301)

Abstract

The theoretical fondations and some engineering applications of the direct Boundary Element Method (BEM) are presented for the case of linear elastostatics including thermal loading and commonly encountered body forces like gravity and centrifugal forces. In plane case problems the classical formulation contains two eigenvalues, hence the solution is non-unique. Two different solution techniques are proposed to avoid this difficulty.

The computation of stress intensity factors (SIF) represents one of the most attractive application areas for BEM. A variety of interesting techniques have been developed in order to derive accurate results. After a brief introduction to the basic SIF-concept of linear Fracture Mechanics some of these techniques are discussed.

Keywords

Stress Intensity Factor Body Force Boundary Element Method Stress Intensity Factor Boundary Integral Equation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fredholm, L, Sur une classe d’equations fonctionelles, Acta Math. 27, 365–390 (1903).CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    Muskhelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 1953.MATHGoogle Scholar
  3. [3]
    Mikhlin, S.G., Integral Equations, Pergamon, New York, 1957.MATHGoogle Scholar
  4. [4]
    Smirnov, V.J., Integral equations and partial differential equations, in A Course in Higher Mathematics, Vol. IV, Addison-Wesley, London, 1964.Google Scholar
  5. [5]
    Kupradze, O.D., Potential Methods in the Theory of Elasticity, Daniel Davey & Co., New York, 1965.MATHGoogle Scholar
  6. [6]
    Kellog, O.D., Foundations of Potential Theory, Dover, New York, 1953.Google Scholar
  7. [7]
    Jaswon, M.A., Integral equation methods in potential theory, I, Proc. Roy. Soc. Ser. A 275, 23–32 (1963).CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Symm, G.T., Integral equation methods in potential theory, H, Proc. Roy. Soc. Ser. A 275, 33–46 (1963).CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Massonnet, C.E., Numerical Use of Integral Procedures, in Stress Analysis (O.G Zienkiewicz and G.S. Holister, Eds.), Wiley, London, 1966.Google Scholar
  10. [10]
    Rizzo, R.J., An integral equation approach to boundary value problems of classical elastostatics, Q. appl. Math. 25, 83–95 (1967).MATHGoogle Scholar
  11. [11]
    Cruse, T.A., and Rizzo, F.J., A direct formulation and numerical solution of the general transient elasto-dynamic problem, I, J. Math. Anal. Appl. 22, 244–259 (1968).CrossRefMATHGoogle Scholar
  12. [12]
    Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C., Boundary Element Techniques — Theory and Applications in Engineering, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.CrossRefMATHGoogle Scholar
  13. [13]
    Zabreyko, P.P., et al., Integral Equations — A Reference Text, Noordhoff, Amsterdam, 1975.CrossRefGoogle Scholar
  14. [14]
    Riccardella, P.C., An implementation of the boundary integral technique for planar problems in elasticity and elasto-plasticity, Report No. SM-73–10, Dept. Mech. Engng., Carnegie Mellon Univ., Pittsburg, 1973.Google Scholar
  15. [15]
    Hartmann, F., Computing the C-matrix in non-smooth boundary points, in New Developments in Boundary Element Methods (C.A. Brebbia, Ed.), pp. 367–379, Butterworths, London, 1980, CML Southampton, 1983.Google Scholar
  16. [16]
    Lachat, J.C., A further development of the boundary integral technique for elastostatics, Ph.D. Thesis, University of Southampton, 1975.Google Scholar
  17. [17]
    Cruse, T.A., Mathematical foundations of the boundary integral equation method in solid mechanics, Report No. AFOSR-TR-77–1002, Pratt and Whitney Aircraft Group, 1977.Google Scholar
  18. [18]
    Cruse, T.A., and Vanburen, W., Three-dimensional elastic stress analysis of a fracture specimen with an edge crack, Int. J. Fracture Mech. 7, 1–15 (1971).Google Scholar
  19. [19]
    Chaudonneret, M., On the discontinuity of the stress vector in the boundary integral equation method for elastic analysis, in Recent Advances in Boundary Element Methods (C.A. Brebbia, Ed.), pp. 185–194, Pentech Press, London, 1986.Google Scholar
  20. [20]
    Brebbia, C.A., The Boundary Element Method for Engineers, Pentech Press, London, Halstead Press, New York, 1978 (second edition, 1980).Google Scholar
  21. [21]
    Danson, D., BEASY (Boundary Element Analysis System), Computational Mechanics Centre, Manual: Southampton, U.K., 1982.Google Scholar
  22. [22]
    Kuhn, G., and Möhrmann, W., Boundary element method in elastostatics: theory and application, Appl. Math. Modelling, 1983, Vol. 7.Google Scholar
  23. [23]
    Drexler, W., Ein Beitrag zur Lösung rotationssymmetrischer, thermoelastischer Kerbprobleme mittels der Randintegralgleichungsmethode, Diss. Techn. Universität München, 1982.Google Scholar
  24. [24]
    Neureiter, W., Boundary-Element-Programmrealisierung zur Lösung von zwei- und dreidimensionalen thermoelastischen Problemen mit Volumenkräften, Diss. Techn. Universität München, 1982.Google Scholar
  25. [25]
    Radaj, D., Möhrmann, W. and Schilberth, G., Economy Convergence of Notch Stress Analysis Using Boundary and Finite Element Methods. Int. J. Numerical Methods Engng. 20, 565–572, 1984.CrossRefMATHGoogle Scholar
  26. [26]
    Mayr, M., Drexler, W. and Kuhn, G., A semianalytical boundary integral approach for axisymmetric elastic bodies with arbitrary boundary conditions, Int. J. Solids Struct., 1980, 16, 863.CrossRefMATHGoogle Scholar
  27. [27]
    Stippes, M., and Rizzo, F.J., A Note on the body force integral of classical elastostatics, Z. Angew. Math. Phys. 28, 339–341 (1977).CrossRefMATHGoogle Scholar
  28. [28]
    Rizzo, F.J., and Shippy, D.J., An advanced boundary integral equation method for three dimensional thermoelasticity, Int. J. Numerical Methods Engng. 11, 1753–1768, 1977.CrossRefMATHGoogle Scholar
  29. [29]
    Papkovitch, P.F., Solution generale des equations d’elasticite, C.R. Acad. Sci. Paris 1932, 195.Google Scholar
  30. [30]
    Neuber, H., Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie, Der Hohlkegel unter Einzellast als Beispiel, ZAMM 1934, 14, 203.CrossRefMATHGoogle Scholar
  31. [31]
    Cruse, T.A., Snow, D.W., and Wilson, R.B., Numerical solutions in axisymmetric elasticity, Comput. Structures 7, 445–451, (1977).CrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    Shippy, D.J., Rizzo, F.J., and Nigan, R.K., A boundary integral equation method for axisymmetric elastostatic bodies under arbitrary surface loads, in Proc. 2nd Int. Symp. on Innovative Numerical Analysis in Appl. Engng. Sci. (R.P. Snow et al., Eds.), University of Virginia Press, Charlottesville, 1980.Google Scholar
  33. [33]
    Mayr, M. und Neureiter, W., Ein numerisches Verfahren zur Lösung des axialsymmetrischen Torsionsproblems, Ingenieur-Archiv 46, 137–142 (1977).CrossRefMATHGoogle Scholar
  34. [34]
    Mayr, M., On the numerical solution of axisymmetric elasticity problems using an integral equation approach, Mech. Res. Com. 3, 393–398 (1976).CrossRefMATHGoogle Scholar
  35. [35]
    Neuber, H., Kerbspannungslehre, Grundlagen für genaue Festigkeitsberechnung mit Berücksichtigung von Konstruktionsform und Werkstoff, 2. Auflage, Springer Verlag, Berlin 1957.Google Scholar
  36. [36]
    Jaswon, M.A. and Symm, G.T., Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, 1977.MATHGoogle Scholar
  37. [37]
    Christiansen, S., Numerical Treatment of an Integral Equation originating from a two-dimensional Dirichlet Boundary Value Problem, in: Abrecht, J. and Collatz, L., (Eds.), Numerische Behandlung von Integralgleichungen, Birkhäuser Verlag, 1979.Google Scholar
  38. [38]
    Kuhn, G., Löbel, G., Potrc, L, Kritisches Lösungsverhalten der direkten Randelementmethode bei logarithmischem Kern, ZAMM 67, 1987.Google Scholar
  39. [39]
    Tada, H., Paris, P. and Irwin, G.R., The Stress Analysis of Crack Handbook, DEL Research Corporation, Hellertown, Pennsylvania, 1973.Google Scholar
  40. [40]
    Sih, G.C., Handbook of Stress Intensity Factors, Institut of Fracture and Solid Mechanics, Lehigh University, 1973.Google Scholar
  41. [41]
    Rooke, D.P. and Cartwright, D.J., Compendium of Stress Intensity Factors, Her Majesty’s Stationary Office, London, 1975.Google Scholar
  42. [42]
    Snyder, M.D. and Cruse, T.A., Boundary integral equation analysis of cracked anisotropic plates, Int. Journal of Fracture, 11, 315–328, 1975.CrossRefGoogle Scholar
  43. [43]
    Kuhn, G., Numerische Behandlung von Mehrfachrissen in ebenen Scheiben, ZAMM 61, 1981.Google Scholar
  44. [44]
    Blandfort, G.E., Ingraffea, A.R. and Liggett, J.A., Two-dimensional stress intensity factor computations using the boundary element method, Int. Journ. Num. Meth. Eng., 17, 387–404, 1981.CrossRefGoogle Scholar
  45. [45]
    Sih, G.C. and Liebowitz, H., Mathematical theories of brittle fracture, in Fracture: An Advanced Treatise, 2, (Ed. H. Liebowitz), Academic Press, N.Y., 67–190, 1968.Google Scholar
  46. [46]
    Broek, D., Elementary Engineering Fracture Mechanics, Sijthoff and Noordhoff, 1978.MATHGoogle Scholar
  47. [47]
    Westergaard, H.W., Bearing Pressures and Cracks, J. Appl. Mech., 6, 1939.Google Scholar
  48. [48]
    Griffith, A.A., The phenomena of rupture and flow in solids, Phil. Trans. Royal Soc., London, 163–198, 1921.Google Scholar
  49. [49]
    Rice, J.R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 35, 17–26, 1968.Google Scholar
  50. [50]
    Erdogan, F., On the stress distribution in plates with colinear cuts under arbitrary loads, Proceedings of the 4. U.S. National Congress of Appl. Mech., 1962.Google Scholar
  51. [51]
    Mews, H., Berechnung von K-Faktoren mittels der Boundary Element Methode, Diss. Universität Erlangen-Nürnberg (erscheint).Google Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • G. Kuhn
    • 1
  1. 1.Universität ErlangenNurembergGermany

Personalised recommendations