# Boundary Element Technique in Elastostatics and Linear Fracture Mechanics

Theory and Engineering Applications
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 301)

## Abstract

The theoretical fondations and some engineering applications of the direct Boundary Element Method (BEM) are presented for the case of linear elastostatics including thermal loading and commonly encountered body forces like gravity and centrifugal forces. In plane case problems the classical formulation contains two eigenvalues, hence the solution is non-unique. Two different solution techniques are proposed to avoid this difficulty.

The computation of stress intensity factors (SIF) represents one of the most attractive application areas for BEM. A variety of interesting techniques have been developed in order to derive accurate results. After a brief introduction to the basic SIF-concept of linear Fracture Mechanics some of these techniques are discussed.

## Keywords

Stress Intensity Factor Body Force Boundary Element Method Stress Intensity Factor Boundary Integral Equation Method
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
Fredholm, L, Sur une classe d’equations fonctionelles, Acta Math. 27, 365–390 (1903).
2. [2]
Muskhelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 1953.
3. [3]
Mikhlin, S.G., Integral Equations, Pergamon, New York, 1957.
4. [4]
Smirnov, V.J., Integral equations and partial differential equations, in A Course in Higher Mathematics, Vol. IV, Addison-Wesley, London, 1964.Google Scholar
5. [5]
Kupradze, O.D., Potential Methods in the Theory of Elasticity, Daniel Davey & Co., New York, 1965.
6. [6]
Kellog, O.D., Foundations of Potential Theory, Dover, New York, 1953.Google Scholar
7. [7]
Jaswon, M.A., Integral equation methods in potential theory, I, Proc. Roy. Soc. Ser. A 275, 23–32 (1963).
8. [8]
Symm, G.T., Integral equation methods in potential theory, H, Proc. Roy. Soc. Ser. A 275, 33–46 (1963).
9. [9]
Massonnet, C.E., Numerical Use of Integral Procedures, in Stress Analysis (O.G Zienkiewicz and G.S. Holister, Eds.), Wiley, London, 1966.Google Scholar
10. [10]
Rizzo, R.J., An integral equation approach to boundary value problems of classical elastostatics, Q. appl. Math. 25, 83–95 (1967).
11. [11]
Cruse, T.A., and Rizzo, F.J., A direct formulation and numerical solution of the general transient elasto-dynamic problem, I, J. Math. Anal. Appl. 22, 244–259 (1968).
12. [12]
Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C., Boundary Element Techniques — Theory and Applications in Engineering, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
13. [13]
Zabreyko, P.P., et al., Integral Equations — A Reference Text, Noordhoff, Amsterdam, 1975.
14. [14]
Riccardella, P.C., An implementation of the boundary integral technique for planar problems in elasticity and elasto-plasticity, Report No. SM-73–10, Dept. Mech. Engng., Carnegie Mellon Univ., Pittsburg, 1973.Google Scholar
15. [15]
Hartmann, F., Computing the C-matrix in non-smooth boundary points, in New Developments in Boundary Element Methods (C.A. Brebbia, Ed.), pp. 367–379, Butterworths, London, 1980, CML Southampton, 1983.Google Scholar
16. [16]
Lachat, J.C., A further development of the boundary integral technique for elastostatics, Ph.D. Thesis, University of Southampton, 1975.Google Scholar
17. [17]
Cruse, T.A., Mathematical foundations of the boundary integral equation method in solid mechanics, Report No. AFOSR-TR-77–1002, Pratt and Whitney Aircraft Group, 1977.Google Scholar
18. [18]
Cruse, T.A., and Vanburen, W., Three-dimensional elastic stress analysis of a fracture specimen with an edge crack, Int. J. Fracture Mech. 7, 1–15 (1971).Google Scholar
19. [19]
Chaudonneret, M., On the discontinuity of the stress vector in the boundary integral equation method for elastic analysis, in Recent Advances in Boundary Element Methods (C.A. Brebbia, Ed.), pp. 185–194, Pentech Press, London, 1986.Google Scholar
20. [20]
Brebbia, C.A., The Boundary Element Method for Engineers, Pentech Press, London, Halstead Press, New York, 1978 (second edition, 1980).Google Scholar
21. [21]
Danson, D., BEASY (Boundary Element Analysis System), Computational Mechanics Centre, Manual: Southampton, U.K., 1982.Google Scholar
22. [22]
Kuhn, G., and Möhrmann, W., Boundary element method in elastostatics: theory and application, Appl. Math. Modelling, 1983, Vol. 7.Google Scholar
23. [23]
Drexler, W., Ein Beitrag zur Lösung rotationssymmetrischer, thermoelastischer Kerbprobleme mittels der Randintegralgleichungsmethode, Diss. Techn. Universität München, 1982.Google Scholar
24. [24]
Neureiter, W., Boundary-Element-Programmrealisierung zur Lösung von zwei- und dreidimensionalen thermoelastischen Problemen mit Volumenkräften, Diss. Techn. Universität München, 1982.Google Scholar
25. [25]
Radaj, D., Möhrmann, W. and Schilberth, G., Economy Convergence of Notch Stress Analysis Using Boundary and Finite Element Methods. Int. J. Numerical Methods Engng. 20, 565–572, 1984.
26. [26]
Mayr, M., Drexler, W. and Kuhn, G., A semianalytical boundary integral approach for axisymmetric elastic bodies with arbitrary boundary conditions, Int. J. Solids Struct., 1980, 16, 863.
27. [27]
Stippes, M., and Rizzo, F.J., A Note on the body force integral of classical elastostatics, Z. Angew. Math. Phys. 28, 339–341 (1977).
28. [28]
Rizzo, F.J., and Shippy, D.J., An advanced boundary integral equation method for three dimensional thermoelasticity, Int. J. Numerical Methods Engng. 11, 1753–1768, 1977.
29. [29]
Papkovitch, P.F., Solution generale des equations d’elasticite, C.R. Acad. Sci. Paris 1932, 195.Google Scholar
30. [30]
Neuber, H., Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie, Der Hohlkegel unter Einzellast als Beispiel, ZAMM 1934, 14, 203.
31. [31]
Cruse, T.A., Snow, D.W., and Wilson, R.B., Numerical solutions in axisymmetric elasticity, Comput. Structures 7, 445–451, (1977).
32. [32]
Shippy, D.J., Rizzo, F.J., and Nigan, R.K., A boundary integral equation method for axisymmetric elastostatic bodies under arbitrary surface loads, in Proc. 2nd Int. Symp. on Innovative Numerical Analysis in Appl. Engng. Sci. (R.P. Snow et al., Eds.), University of Virginia Press, Charlottesville, 1980.Google Scholar
33. [33]
Mayr, M. und Neureiter, W., Ein numerisches Verfahren zur Lösung des axialsymmetrischen Torsionsproblems, Ingenieur-Archiv 46, 137–142 (1977).
34. [34]
Mayr, M., On the numerical solution of axisymmetric elasticity problems using an integral equation approach, Mech. Res. Com. 3, 393–398 (1976).
35. [35]
Neuber, H., Kerbspannungslehre, Grundlagen für genaue Festigkeitsberechnung mit Berücksichtigung von Konstruktionsform und Werkstoff, 2. Auflage, Springer Verlag, Berlin 1957.Google Scholar
36. [36]
Jaswon, M.A. and Symm, G.T., Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, 1977.
37. [37]
Christiansen, S., Numerical Treatment of an Integral Equation originating from a two-dimensional Dirichlet Boundary Value Problem, in: Abrecht, J. and Collatz, L., (Eds.), Numerische Behandlung von Integralgleichungen, Birkhäuser Verlag, 1979.Google Scholar
38. [38]
Kuhn, G., Löbel, G., Potrc, L, Kritisches Lösungsverhalten der direkten Randelementmethode bei logarithmischem Kern, ZAMM 67, 1987.Google Scholar
39. [39]
Tada, H., Paris, P. and Irwin, G.R., The Stress Analysis of Crack Handbook, DEL Research Corporation, Hellertown, Pennsylvania, 1973.Google Scholar
40. [40]
Sih, G.C., Handbook of Stress Intensity Factors, Institut of Fracture and Solid Mechanics, Lehigh University, 1973.Google Scholar
41. [41]
Rooke, D.P. and Cartwright, D.J., Compendium of Stress Intensity Factors, Her Majesty’s Stationary Office, London, 1975.Google Scholar
42. [42]
Snyder, M.D. and Cruse, T.A., Boundary integral equation analysis of cracked anisotropic plates, Int. Journal of Fracture, 11, 315–328, 1975.
43. [43]
Kuhn, G., Numerische Behandlung von Mehrfachrissen in ebenen Scheiben, ZAMM 61, 1981.Google Scholar
44. [44]
Blandfort, G.E., Ingraffea, A.R. and Liggett, J.A., Two-dimensional stress intensity factor computations using the boundary element method, Int. Journ. Num. Meth. Eng., 17, 387–404, 1981.
45. [45]
Sih, G.C. and Liebowitz, H., Mathematical theories of brittle fracture, in Fracture: An Advanced Treatise, 2, (Ed. H. Liebowitz), Academic Press, N.Y., 67–190, 1968.Google Scholar
46. [46]
Broek, D., Elementary Engineering Fracture Mechanics, Sijthoff and Noordhoff, 1978.
47. [47]
Westergaard, H.W., Bearing Pressures and Cracks, J. Appl. Mech., 6, 1939.Google Scholar
48. [48]
Griffith, A.A., The phenomena of rupture and flow in solids, Phil. Trans. Royal Soc., London, 163–198, 1921.Google Scholar
49. [49]
Rice, J.R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 35, 17–26, 1968.Google Scholar
50. [50]
Erdogan, F., On the stress distribution in plates with colinear cuts under arbitrary loads, Proceedings of the 4. U.S. National Congress of Appl. Mech., 1962.Google Scholar
51. [51]
Mews, H., Berechnung von K-Faktoren mittels der Boundary Element Methode, Diss. Universität Erlangen-Nürnberg (erscheint).Google Scholar