Five Lectures on Nonlinear Finite Element Methods

  • E. Stein
  • D. Bischoff
  • N. Müller-Hoeppe
  • W. Wagner
  • P. Wriggers
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 301)


This course will give a modern concept of finite-element-method in nonlinear solid mechanics using material (Lagrangian) coordinates. Elastic post-buckling analysis of shells is treated as an essential example for the geometrically nonlinear behaviour of structures, and elastic-plastic deformations are introduced in the context of ultimate load analysis of thin-walled steel structures. Lastly, problems with unilateral constraints, such as incompressible elastic deformations and contact problems of several deformable bodies are treated. A main feature of this course is the derivation of consistent linearizations of the weak forms of equilibrium within the same order of magnitude, taking also into account the material laws and — if present unilateral constraints, in order to get Newton-type iterative algorithms with quadratic convergence.


Line Search Shell Element Virtual Work Finite Element Formulation Nonlinear Finite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argyris, J. H.; Balmer, H.; Kleiber, M.; Hindenlang, U. (1980): Natural description of large inelastic deformations for shells of arbitrary shape-application of TRUMP element, Comp. Meth. Appl. Mech. Engng. 22, 361–389.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Arrow, K.J.; Hurwicz, H.; Uzawa, H. (1958): Studies in linear and nonlinear programming, Stanford University Press, Stanford.Google Scholar
  3. 3.
    Bank, R.E. (1983): The efficient implementation of local mesh refinement algorithms, in: Babuska, I., Chandra J., Flaherty, J.E., (eds.), Adaptive Computational Methods for Partial Differential Equations (SIAM, Philadelphia, PA).Google Scholar
  4. 4.
    Basar, Y.; Krätzig, W.B.(1985): Mechanik der Flächentragwerke, Vieweg-Verlag, Braunschweig, Wiesbaden.CrossRefGoogle Scholar
  5. 5.
    Bathe, K.J. (1982): Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs.Google Scholar
  6. 6.
    Bathe, K.J.; Ramm, E.; Wilson, E.L. (1975): Finite element formulation for large deformation analysis, Int. J. Num. Meth. Eng. 9, 353–386.CrossRefMATHGoogle Scholar
  7. 7.
    Bathe, K.J.; Ho, L.W. (1981): A simple and effective element for analysis of general shell structures, Comp. & Struct. 13, 673–681.CrossRefMATHGoogle Scholar
  8. 8.
    Batoz, J.L.; Bathe, K.J.; Ho, L.W. (1980): A study of three-node triangular plate bending elements, Int. J. Num. Meth. Eng. 15, 1771–1812.CrossRefMATHGoogle Scholar
  9. 9.
    Bertsekas, D.P. (1982): Constrained optimization and Lagrange multiplier methods, Academic Press, New York.MATHGoogle Scholar
  10. 10.
    Bischoff, D. (1985): Indirect optimization algorithms for nonlinear contact problems, in: Whiteman, J.R. (ed.): The mathematics of finite elements and applications V (MAFELAP 1984), Acad. Pr., London, 533–545.CrossRefGoogle Scholar
  11. 11.
    Bischoff, D. (1986): Generalization of Newton-type methods to inelastic contact problems, in: el Piero, G.: Unilateral problems in structural analysis, to appear.Google Scholar
  12. 12.
    Bischoff, D.; Mahnken, R. (1984): Zur Konvergenz von Kontaktalgorithmen die auf Active Set Strategien beruhen, in: Bufler, H., Gwinner, J. (Eds.): Unilaterale Probleme (GAMM-Seminar, Stuttgart), Bi 1–16.Google Scholar
  13. 13.
    Brandt, A. (1982): Guide to multi-grid development, in: Hackbusch, W., Trottenberg, U., eds., Multigrid Methods, Springer, Berlin, 220–312.CrossRefGoogle Scholar
  14. 14.
    Ciariet, P.G. (1983): Lectures on three-dimensional elasticity, Springer, Berlin.CrossRefGoogle Scholar
  15. 15.
    Dennis, J.E.; Schnabel, R. (1982): Numerical methods for unconstrained optimization and nonlinear equations, Pr. Hall, Englewood Cliffs, N.J.Google Scholar
  16. 16.
    Ekeland, I.; Temam, R. (1976): Convex analysis and variational problems, North Holland, Amsterdam (1976).MATHGoogle Scholar
  17. 17.
    Fried, I. (1985): Nonlinear Finite Element Analysis of the Thin Elastic Shell of Revolution. Comp. Meth. Appl. Mech. 48, 283–299.CrossRefMATHGoogle Scholar
  18. 18.
    Grossmann, C; Kaplan, A.A. (1979): Strafmethoden und modifizierte Lagrangefunktionen in der nichtlinearen Optimierung, B.G. Teubner, Leipzig.Google Scholar
  19. 19.
    Gruttmann, F. (1985): Konsistente Steifigkeitsmatrizen in der Elasto- Plastizitätstheorie, Workshop: Diskretisierungen in der Kontinuumsmechanik — Finite Elemente und Randelemente, Bad Honnef, Gr1-Gr14.Google Scholar
  20. 20.
    Hallquist, J.Q. (1979): NIKE 2D: an implicit finite-element code for analysing the static and dynamic response of two-dimensional solids, Rept. UCRL-52678, Univ. of Calif.Google Scholar
  21. 21.
    Han, S.-P. (1977): A globally convergent method for nonlinear programming, J. Optim. Theory Appl., 22, 297–309.CrossRefMATHGoogle Scholar
  22. 22.
    Harbord, R. (1972): Berechnungen von Schalen mit endlichen Verschiebungen-gemischte finite Elemente- Bericht Nr. 72–7 Inst. f. Statik, TU Braunschweig.Google Scholar
  23. 23.
    Harte, R.(1982): Doppeltgekrümmte finite Dreieckelemente für die lineare und geometrisch nichtlineare Berechnung allgemeiner Flächentragwerke, Inst.KIB, Techn. Bericht Nr. 82–10, Ruhr-Universität Bochum.Google Scholar
  24. 24.
    Harte, R.; Eckstein, U.(1986): Derivation of geometrically nonlinear finite shell elements via tensor notation, Int. J. Num. Meth. Engng. 23,p.367–384.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Huang, H.C.; Hinton E.(1984): A nine node degenerated shell element with enhanced shear interpolation, Research Report, Dept. of Civil Engng., Swansea, U.K.Google Scholar
  26. 26.
    Hughes, T.J.R.; Taylor, R.L.; Kanoknukulchai, W. (1977): A simple and efficient finite element for plate bending. Int. J. Num. Meth. Engng. 11, 1529–1543.CrossRefMATHGoogle Scholar
  27. 27.
    Hughes, T.J.R.; Cohen, M.; Haroun, M.(1978): Reduced and selective integration techniques in the finite element analysis of plates, Nucl. Engng. Des. 46, 203–222.CrossRefGoogle Scholar
  28. 28.
    Kahn, R.; Wagner, W. (1986): Überkritische Berechnung ebener Stabtragwerke unter Berücksichtigung einer vollständig geometrisch nichtlinearen Theorie, ZAMM, 67, T197–199.Google Scholar
  29. 29.
    Koiter, W.T. (1966): On the Nonlinear Theory of thin elastic Shells. Proc. Ko-ninl. Ned. Akad. Wetenshap Serie B69: 1–54.MathSciNetGoogle Scholar
  30. 30.
    Luenburger, D.G. (1984): Introduction to linear and nonlinear programming, Addison — Wesley, Reading.Google Scholar
  31. 31.
    Malkus, D.S.; Hughes, T.R.J. (1978): Mixed finite element methods — reduced and selective integration techniques: a unification of concepts. Comp. Meth. Appl. Mech. Engng. 15, 63–81.CrossRefMATHGoogle Scholar
  32. 32.
    Malvern, L.E. (1969): Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs.Google Scholar
  33. 33.
    Marguerre, K. (1939): Jahrbuch der deutschen Luftfahrtforschung 1939,413.Google Scholar
  34. 34.
    Marsden, J.E.; Hughes, T.R.J. (1983): Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs.MATHGoogle Scholar
  35. 35.
    Matthies, H.; Strang, G. (1979): The solution of nonlinear finite element equations, Int. J. for Num. Meths. in Eng. 14, 1613–1626.CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Noor, A. K.; Peters, J. M.; Andersen, C. M. (1984): Mixed Models and Reduction Techniques for Large-Rotation Nonlinear Problems. Comp. Meth. Appl. Mech. Eng., 44, 67–89.CrossRefMATHGoogle Scholar
  37. 37.
    Pica, A.; Wood, R. D.(1980): Postbuckling behaviour of Plates and Shells using a Mindlin Shallow Shell Formulation, Comp. & Struct. 12, 759–768.CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Pietraszkiewicz, W.(1977): Introduction to the Nonlinear Theory of Shells. Mitt. aus dem Inst. f. Mechanik, Nr. 10, Ruhr-Universität Bochum.Google Scholar
  39. 39.
    Pietraszkiewicz, W.(1979): Finite Rotations and Lagrangean Description in the Non-linear Theory of Shells. Polish Academy of Sciences, Institute of fluid-flow machinery, Polish Scientific Publishers, Warszawa-Poznan.MATHGoogle Scholar
  40. 40.
    Ramm, E.(1976): A plate/shell element for large deflections and rotations, in: US-Germany Symp. on “ Formulations and Computational Algorithms in Finite Element Analysis”, MIT, MIT-Press.Google Scholar
  41. 41.
    Ramm, E.(1981): Strategies for Tracing the Nonlinear Response Near Limit Points. in: Nonlinear Finite Element Analysis in Structural Mechanics, ed. Wunderlich, Stein, Bathe, Springer Verlag Berlin-Heidelberg-New-York.Google Scholar
  42. 42.
    Riks, E. (1972): The application of Newtons Method to the problem of Elastic stability, J. Appl. Mech., 39, p. 1060–1066.CrossRefMATHGoogle Scholar
  43. 43.
    Riks, E., (1984): Some computational aspects of the stability analysis of nonlinear structures, Comp. Meth. Appl. Mech. Engng. 47, p. 219–259.CrossRefMATHGoogle Scholar
  44. 44.
    Schittkowski, K. (1981): The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function, part I, II, Numerische Mathematik, 39, 83–127.MathSciNetGoogle Scholar
  45. 45.
    Schwetlick, H. (1979): Numerische Lösung nichtlinearer Gleichungen, R. Oldenbourg, München.Google Scholar
  46. 46.
    Simmonds, J.G.; Danielson, D.A.(1972): Nonlinear Shell Theory with Finite Rotations and Stress-Function Vectors. J. Appl. Mech. Trans. ASME Serie E39 1085–1090.CrossRefMATHGoogle Scholar
  47. 47.
    Simo, J.C; Taylor, R.L. (1985): Consistent tangent operators for rate- independent elasto-plasticity, Comp. Meth. Appl. Mech. Eng. 48, 101–118.CrossRefMATHGoogle Scholar
  48. 48.
    Stein, E.; Bischoff, D.; Brand, G.; Plank, L. (1985): Adaptive multi-grid methods for finite element systems with bi- and unilateral constraints, Comp. Meths. in Appl. Mech. Eng. 52, 873–884.Google Scholar
  49. 49.
    Stein, E.; Lambertz, K.H.; Plank, L. (1985): Ltltimate load analysis of folded plate structures with large elastoplastic deformations — theoretical and practical comparisons of different FE-algorithms, Numeta 85, Swansea, U.K.Google Scholar
  50. 50.
    Stein, E.; Paulun, J. (1981): Incremental elastic-plastic deformations of stiffened plates in compression and bending, in: Nonlinear finite element analysis in Structural mechanics, Springer.Google Scholar
  51. 51.
    Stuben, K.; Trottenberg, U. (1982): Multigrid methods: Fundamental algorithms, model problem analysis and applications, in: Hackbusch, W., Trottenberg, U., eds., Multigrid Methods, Springer, Berlin, 1–176.CrossRefGoogle Scholar
  52. 52.
    Truesdell, C.; Noll, W. (1965): The Non-Linear Field Theories of Mechanics, in Handbuch der Physik, Band III/3, ed. S. Flügge, Springer-Verlag, Berlin.Google Scholar
  53. 53.
    Wagner, W.; Wriggers, P. (1985): Kurvenverfolgungsalgorithmen in der Strukturmechanik, in: GAMM-Seminar: Geometrisch/physikalisch nichtlineare Probleme, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, S 85/3.Google Scholar
  54. 54.
    Wagner, W.; Wriggers, P.: A Simple Method for the Calculation of Postcritical Branches, to appear in Engineering Computations.Google Scholar
  55. 55.
    Wagner, W. (1985): Eine geometrisch nichtlineare Theorie schubelastischer Schalen mit Anwendung auf Finite-Element- Berechnungen von Durchschlag-und Kontaktproblemen. Forschungs-und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Nr. F 85/2.Google Scholar
  56. 56.
    Wempner, G.A. (1971): Discrete approximations related to nonlinear theories of solids, Int. J. Solids Structures 7, 1581–1599.CrossRefMATHGoogle Scholar
  57. 57.
    Wriggers, P.; Nour-Omid, B.(1984): Solution Methods for Contact Pronlems, Rept. UCB/SESM 84/09, Dept. of Civil Engng. UC Berkeley.Google Scholar
  58. 58.
    Wriggers, P.; Simo, J.C. (1985): A note on tangent stiffnesses for fully nonlinear contact problems, Comm. Appl. Num. Meths., 1, 199–203.CrossRefMATHGoogle Scholar
  59. 59.
    Wriggers, P. (1985): Die Behandlung der Inkompressibilität mit gemischten finiten Elementen oder der selektiv-reduzierten Integration, in Seminarbericht: Gemischte finite Elemente, Herausgeber: W. Wunderlich, Bochum.Google Scholar
  60. 60.
    Wriggers, P.; Wagner, W.; Stein, E. (1987): Algorithms for nonlinear Contact Constraints with Application to Stability Problems of Rods and Shells, Computational Mechanics, 2 (1987),p. 215–230.CrossRefMATHGoogle Scholar
  61. 60.
    Yserentant, H. (1983): On the multi-level splitting of FE-spaces, Bericht Nr. 21, RWTH Aachen, Inst. f. Geometrie u. Prakt. Mathematik.Google Scholar
  62. 61.
    Zienkiewicz, O.C.; Bauer, J.; Morgan, K.(1977): A Simple and Efficient Element for Axisymmetric Shells. Int. J. Num. Meth. Engng. 11, 1545–1558.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • E. Stein
    • 1
  • D. Bischoff
    • 1
  • N. Müller-Hoeppe
    • 1
  • W. Wagner
    • 1
  • P. Wriggers
    • 1
  1. 1.Universität HannoverHannoverGermany

Personalised recommendations